Practical
Embedded Controllers

Practical Embedded Controllers: Design and
Troubleshooting with the Motorola 68HC11

Titles in the series

Practical Cleanrooms: Technologies and Facilities (David Conway)

Practical Data Acquisition for Instrumentation and Control Systems (John Park,
Steve Mackay)

Practical Data Communications for Instrumentation and Control (Steve Mackay,
Edwin Wright, John Park)

Practical Digital Signal Processing for Engineers and Technicians (Edmund Lai)

Practical Electrical Network Automation and Communication Systems (Cobus
Strauss)

Practical Embedded Controllers (John Park)
Practical Fiber Optics (David Bailey, Edwin Wright)

Practical Industrial Data Networks: Design, Installation and Troubleshooting (Steve
Mackay, Edwin Wright, John Park, Deon Reynders)

Practical Industrial Safety, Risk Assessment and Shutdown Systems for
Instrumentation and Control (Dave Macdonald)

Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems (Gordon
Clarke, Deon Reynders)

Practical Radio Engineering and Telemetry for Industry (David Bailey)
Practical SCADA for Industry (David Bailey, Edwin Wright)
Practical TCP/IP and Ethernet Networking (Deon Reynders, Edwin Wright)

Practical Variable Speed Drives and Power Electronics (Malcolm Barnes)

Practical Embedded Controllers:
Design and Troubleshooting with the
Motorolla 68HC11

John Park AsD, IDC Technologies, Perth, Australia

ELSEVIER

AMSTERDAM « BOSTON « HEIDELBERG « LONDON « NEW YORK « OXFORD
PARIS « SAN DIEGO « SAN FRANCISCO « SINGAPORE « SYDNEY « TOKYO

Newnes is an imprint of Elsevier Newnes

Newnes

An imprint of Elsevier

Linacre House, Jordan Hill, Oxford OX2 8DP
200 Wheeler Road, Burlington, MA 01803

First published 2003

Copyright © 2003, IDC Technologies. All rights reserved

No part of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether

or not transiently or incidentally to some other use of this publication) without

the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of

a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England W1T 4LP. Applications for the copyright holder's written
permission to reproduce any part of this publication should be addressed

to the publisher

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 07506 58029

For information on all Newnes publications, visit
our website at www.newnespress.com

Typeset and Edited by Vivek Mehra, Mumbai, India
(vivekmehra@tatanova.com)

Printed and bound in Great Britain

Special thanks to

Industrial Automation
www.cs.jcu.edu.au/~gregory/hc11/

All photos in this book courtesy of

Cursor Magic
WWW.cursormagic.com
photos@cursormagic.com

Preface

From microwave ovens to alarm systems to industrial programmable logic controllers (PLCs) and
distributed control systems (DCSs), embedded controllers are running our world.

Embedded controllers are used in most items of electronic equipment today. They can be thought of
as intelligent electronic devices used to control and monitor devices connected to the real world. This
can beaPLC, DCS or a smart sensor. These devices are used in almost every walk of life today. Most
automobiles, factories and even kitchen appliances have embedded controllersin them.

The microcontrollers that are at the heart of these and many more devices are becoming easier and
simpler to use. But when these devices fail, the solution to the problem needs to be found and repairs
done quickly.

This book will help technicians, engineers and even the casual user understand the workings of
microcontrollers, along with the most common problems and their solutions.

This book covers all aspects of embedded controllers but is biased towards troubleshooting and
design. The book also covers design, specification, programming, installation, configuration and
troubleshooting.

After reading this book we hope you will have learnt how to:

¢ Design, set up and program a complete embedded controller development system
o Apply the latest techniques in programming these versatile devices

o Apply troubleshooting tips and tricks for microcontrollers

o Apply the best techniques for installation of microcontrollers

¢ Fix problems due to electrical noise and interference

e Design correctly thefirst time to avoid grounding and EMC problems

o Choose and configure the correct software

Typica people who will find this book useful include:

e Electronic technicians and engineers

e |nstrumentation and control engineers and technicians
¢ Process control engineers and technicians

e Electrical engineers

e Consulting engineers

¢ Process development engineers

e Design engineers

e Control systems sales engineers

A basic knowledge of eectrical principles is useful in understanding the concepts outlined in the
book, but the contents are of a fundamental nature and are easy to comprehend.

The structure of the book is as follows.

Chapter 1: Introduction. This chapter gives a brief overview of the main components of a
microcontroller.

Chapter 2: Microcontroller basics. A review of the basics of this device with a
discussion on number systems, Boolean logic, accumulators, registers, data communications, power
systems, crystals and oscillators, is done in this chapter.

xiv Preface

Chapter 3: Microcontroller programming. A review of the simple techniques involved
in programming a microcontroller with a discussion on the various programming issues such as
programming structures, addressing modes, operations and finally a short comparison of C++ and
BASIC, isdonein this chapter.

Chapter 4: Microcontroller memory. The main types and techniques in the effective use
of memory such as user RAM, BUFFALO routines, interrupts, control registers, and EEPROM are
assessed here.

Chapter 5: Microcontroller inputs and outputs. Anaog and digital inputs, keypad
and LCD interfacing are described here.

Chapter 6: Data communications. Thisimportant topic is broken down into a discussion
on the fundamental's, the OSlI model, modes of communication and RS-232 and RS-485.

Chapter 7: Noise reduction. This chapter gives an overview of noise reduction and a
discussion on conductive, capacitive, and magnetically coupled noise.

Chapter 8: EMC grounding solutions. The most important features of grounding (and
protection from lightning) to protect the microcontroller from the effects of EMC are discussed here.

Chapter 9: Installation and troubleshooting. This chapter is a short discussion on
connections, cable runs and trays, wire management and troubleshooting techniques.

Chapter 10: End notes. A wrap discussion on the issues discussed in the earlier chapters
with a few words on assembly language programming, memory, inputs and outputs, data
communication, noise reduction and grounding solutions and finally installation techniques.

Contents

Preface Xiii
1 Introduction 1
1.1 Microcontroller introduction 1
1.2 Microcontroller design and functions 3
1.3 Assembly language programming 5
1.4 Inputs and outputs 7
1.5 Data communication 8
1.6 Noise reduction 9
1.7 Grounding solutions 10
1.8 Installation techniques 11
1.9 Conclusion 12
2 Microcontroller basics 13
21 Introduction 13
2.2 Number systems — binary, hex, and decimal 17
2.2.1 Bits, dibits, nibbles, bytes, words and long words 17
22.2 Conversion from binary to hexadecimal 18
2.2.3 ASCII, hexadecimal and BCD 18
224 Converting from ASCII to BCD and HEX 19
2.3 Gates — AND, OR, XOR and NOT gates 20
2.3.1 AND gates — physical and virtual 20
2.3.2 OR gates — physical and virtual 21
2.3.3 XOR gates — physical and virtual 21
2.34 NOT gates — physical and virtual 22
2.4 Accumulators, A, B and D 22
2.4.1 Addressing modes 22
242 Loading, storing and transferring accumulators 23
24.3 Add, subtract, compare, increment and decrement A and B 24
2.4.4 AND, OR and test bits 24
245 Arithmetic and logical shifting and rotating 24
2.4.6 Data and bit testing 24
2.5 Registers — X, Y, the stack and ports 25
2.5.1 The X and Y registers 25
25.2 The stack 28
2.5.3 Ports A,B,C,Dand E 27
2.6 Communications synchronous and asynchronous 28

vi Contents

2.6.1 Asynchronous character communications 28
2.6.2 Synchronous packet communications 29
2.6.3 Specifying a system — asynchronous vs synchronous 30
2.7 Power systems 30
2.7.1 Hardware vs software 31
2.7.2 Hardware reset design 32
2.7.3 COP watchdog (Woof) 33
2.7.4 Power failure and brownout protection 34
2.8 Crystals and oscillator 34
2.8.1 Values vs baud rate 35
28.2 EMC and PCB crystal clock design 35
2.9 Conclusion 37
3 Microcontroller programming 39
3.1 Introduction to programming the microcontroller 39
3.2 Programming structure and specifications 41
3.2.1 Programming structures 42
3.2.2 Inputs 42
3.2.3 Manipulation of data 43
3.24 Outputs 44
3.24 Flow charts 44
3.2.6 Loading a program into an evaluation module (EVM) 48
3.2.7 Stetting up the EVM 49
3.3 Addressing modes 49
3.4 Load, stores and transfers 50
3.5 Arithmetic operations 51
3.6 Logical operations 52
3.7 Shifts and rotates 53
3.8 Index registers and the stack 54
3.9 Condition code register 57
3.10 Branches, jumps, interrupts and calls 57
3.11 BASIC and C++ 58
3.11.1 BASIC 58
3.11.2 Using C++ in embedded programming 58
3.12 Conclusion 58
4 Microcontroller memory 60
4.1 Introduction to memory 60
4.2 User RAM 61
4.2.1 Microcontroller internal RAM 62

Contents vii

422 External RAM 62
4.3 BUFFALO routines, memory map and vectors 64
4.3.1 BUFFALO as a development tool 64
43.2 BUFFALO utility subroutines 65
4.3.3 BUFFALO memory map 65
4.3.4 BUFFALDO interrupt pseudo-vectors 66
4.4 Interrupts, vectors and pseudo-vectors 66
441 Software vs hardware interrupts 67
4.4.2 Maskable vs non-maskable interrupts 68
4.5 Control registers 70
4.5.1 Memory mapped 1/10 70
452 Accessing and using control registers 70
4.6 EEPROM 71
4.6.1 Clearing the EEPROM example 72
46.2 Writing to the EEPROM example 73
4.7 Conclusion 74
5 Microcontroller inputs and outputs 76
5.1 Introduction to inputs and outputs 76
5.2 Single ended vs differential inputs 77
5.2.1 Single ended analog circuits 77
5.2.2 Single ended digital circuits 78
5.2.3 Differential analog circuits 79
5.2.4 Differential digital circuits 79
5.3 Digital inputs 80
5.3.1 Switch sensing and de-bounce 80
5.3.2 Normally open (NO) and normally closed (NC) switches 81
5.3.3 Electronic switches 81
5.4 Digital outputs 82
5.4.1 Digital control 82
54.2 Back EMF causes and solutions 83
5.5 Analog inputs 84
5.5.1 Voltage, current and resistive measurement 84
5.5.2 Analog and digital filtering and amplification 85
5.5.3 Nyquist and the sample rate 86
554 Resolution management 87
5.6 Digital control of analog devices 87
5.6.1 Basic stepper motors 87
5.6.2 Stepper motor control and communication 88
5.7 Keypad interfacing 88
5.7.1 Connecting the keypad to the evaluation modules (EVM) 88
5.7.2 Reading the keypad in software 89

viii Contents

5.8 LCD interfacing 91
5.8.1 LCD software setup 92
5.8.2 Writing to the LCD 94
5.9 Conclusion 95
6 Data communications 96
6.1 Introduction to data communication 96
6.2 Basics of serial data communication 97
6.2.1 History of serial data communications 97
6.2.2 Three parts of data communications 98
6.3 Open system interconnection model 100
6.3.1 Application layer 101
6.3.2 Session, presentation, transport and network layers 102
6.3.3 Datalink layer 102
6.3.4 Physical layer 102
6.3.5 Protocols and the three layer model 103
6.4 Modes of communications 103
6.4.1 Simplex 103
6.4.2 Half-duplex 103
6.4.3 Full-duplex 104
6.4.4 The master slave bus 104
6.4.5 The CSMA/CD bus 105
6.4.6 The token bus system 106
6.4.7 Timed systems 106
6.5 RS-232 107
6.5.1 Introduction to RS-232 107
6.5.2 Function of the lines 108
6.5.3 RS-232 installation and troubleshooting 108
6.6 RS-485 111
6.6.1 Introduction to RS-485 111
6.6.2 RS-485 vs RS-422 112
6.6.3 RS-485 installation and troubleshooting 113
6.7 Fiber optic cables 114
6.8 Fieldbus protocols used in controllers 115
6.9 Conclusion 116
7 Noise reduction 118
7.1 Introduction to noise reduction 118

7.1.1 The decibel
7.1.2 Signal to noise ratio
7.1.3 Sources of noise — internal vs external

7.1.4 Single ended or grounded circuits

119
119
119
121

Contents ix

715 Single ended measurement of grounded sources 121
7.1.6 Single ended grounded equipment 122
71.7 Differential noise circuits 123
718 Differential test equipment 124
7.1.9 Common mode noise problems 125
7.1.10 Low impedance drops as noise sources 126
7.1.11 Types of externally induced noise 127
7.2 Conductive coupled noise 127
7.2.1 Conductive noise from external equipment 128
7.2.2 Conductive noise from transmission lines 128
7.3 Capacitive coupled noise 129
7.3.1 Capacitive noise from adjacent equipment 129
7.3.2 Capacitive noise from communication lines 130
7.4 Magnetically coupled noise 130
7.4.1 Magnetically induced noise from adjacent cables 131
7.4.2 Magnetically induced noise from adjacent equipment 132
7.5 EMC and noise reduction in PCB design 132
7.5.1 Placement of analog, digital and power supply circuits 133
7.5.2 Digital circuit decoupling 134
7.5.3 Ground planes 135
7.5.4 1D and 3D Faraday shields 135
7.6 Conclusion 136
8 EMC grounding solutions 137
8.1 Introduction to EMC grounding solutions 137
8.2 EMC grounding 138
8.2.1 Ground specifications 138
8.2.2 Types of earth grounds 141
8.3 EMC grounding on a PCB 143
8.3.1 PCB design recommendations 143
8.3.2 Track placement 147
8.3.3 Faraday boxes 148
8.4 Protecting a PCB from lightning 150
8.4.1 Placement of protection on the PCB 151
8.4.2 The GDT, MOV and transorb 152
8.5 Microcontroller equipment ground 153
8.6 Enclosure or safety ground 154
8.6.1 Spiked earth grounds 154
8.6.2 Cable trench grounds 155
8.6.3 Tower lightning protection 156
8.7 Conclusion 157

X Contents

9 Installation and troubleshooting 159
9.1 Introduction to installation and troubleshooting 159
9.2 Connections — screw, crimp and solder 160
9.2.1 Screw connectors 162
9.2.2 Crimp connectors 163
9.2.3 Soldering connections 164
9.24 Connector problems and solutions 164
9.3 Cable runs and trays 166
9.3.1 Metal vs plastic runs and trays 166
9.3.2 Vertical runs and trays 167
9.3.3 Horizontal runs and trays 168
9.4 Cable ties and mounting 169
9.5 Cooling, heating and air conditioning 170
9.6 Wire management in a cable run 171
9.7 Conduit installation 172
9.8 Troubleshooting techniques 173
9.9 Safety considerations 174
9.10 Conclusion 175
10 End notes 176
10.1 Conclusion 176
10.2 CPU design and functions 176
10.3 Assembly language programming 177
10.4 Memory 178
10.5 Inputs and outputs 178
10.6 Data communication 179
10.7 Noise reduction 180
10.8 Grounding solutions 181
10.9 Installation techniques 181
10.10 Final words 182
Practicals 183
Practical 1: Setting up the 68HC11 emulator board 183
Practical 2: Activating LEDs on the EVM 191
Practical 3: Reading switches on the EVM 197
Practical 4: Sending characters to an LCD display 204
Practical 5: Reading keypad input 212

Contents xi

Practical 6: Using the PAT software 221
Practical 7: Viewing character data transmission 226
Practical 8: Troubleshooting a data communication system 233
Practical 9: Troubleshooting a protocol problem 236
Bibliography 242

Index 243

11

Introduction

Objectives

When you have completed this chapter, you will be able to:

Describe the basic parts and functions of microcontrollers
Explain what assembly language is and how it is used
Describe memory mapping

Describe the basics of inputs and outputs

Describe what types of data communications controllers use
Explain noise reduction and its relationship to good signals
Describe potentia grounding problems

Microcontroller introduction

Embedded controllers are used in most commercial and industrial electronic equipment.
The sheer volume of embedded controllers used in the world drives us to understand how
they work and then how to troubleshoot and repair them. The microcontrollers and
support chips used in these controllers are becoming smarter and easier to use. This is
bringing the design and use of embedded controllers to more and more engineers hence
the need for a good understanding of what embedded controllers are and how to
troubleshoot them.

Embedded controllers are intelligent electronic devices used to control and monitor
devices connected to the real world. This can be a microwave oven, programmable logic
controller (PLC), distributed control system (DCS) or a smart sensor. These devices are
used in amost every walk of life today. Most automobiles, factories and even kitchen
appliances have embedded controllers in them. As time goes on and electronic devices
get smarter and smaller, the embedded controller will be in or associated with everything
we touch throughout the day.

Early embedded controllers contained a CPU (central processing unit) and a multitude
of support chips. As time went on, support chips were included in the CPU chip until it
became a microcontroller. A microcontroller is defined as a CPU plus random access
memory (RAM), electrically erasable programmable read only memory (EEPROM),

2 Practical Embedded Controllers

inputs/outputs (1/0) and communications (Comms). The embedded controller is a
microcontroller with peripherals such as keypads; displays and relays connected to it and
is often connected to other embedded controllers by way of some type of communication
system.

Figurel.1
Embedded controller development board

Figure1.2
Keypad for embedded controller

Electronic equipment is becoming more and more susceptible to noise and other outside
influences that can cause catastrophic problems. To be able to troubleshoot and ultimately
repair the embedded controller it is not only necessary to understand the inter-workings of
the embedded controller but also the external forces that can affect the normal operation
of the controller. This may be noise, bad connections or incorrect installation of the
system. Often simple things like bad grounds or incorrectly made connections can cost
the user hundreds, if not thousands of dollars in down-time. Although the embedded
controller ultimately can be a complicated device, when disassembled into its basic parts
it becomes ssimple, clear and easy to understand.

1.2

Introduction 3

Microcontroller design and functions

The microcontroller is a direct descendent of the CPU, in fact every microcontroller has a
CPU asthe heart of the device. It is therefore important to understand the CPU in order to
ultimately understand the microcontroller and embedded controller.

The central processor unit (CPU) is the brain of the microcontroller. The CPU controls
al functions and uses the program that resides in RAM, EEPROM or EPROM to
function. The program may reside in one or more of these devices at the same time. Part
of the program might bein RAM while another might be in EEPROM.

Figure1.3
68HC11 CPU

A program is a sequence of instructions that tell the CPU what to do. These instructions
could be compared to instructions a teacher may give to a student to get a desired result.
The instructions sent to the CPU are very, very simple and it usualy takes many
instructions to get the CPU to do what is necessary to accomplish a task. Upper level
programming languages like BASIC and C++ include multiple instructions in one
command to speed up the process of programming the CPU. Just like the human brain the
CPU is made up of regions that have specific functions. These components are controlled
by the program instructions.

The main components of the microcontroller are as follows:

CPU

External address bus
External data bus
External control bus
Internal RAM
Internal ROM
Internal ERPROM
Internal EEPROM
Internal registers
Digital inputs
Counter inputs
Digital outputs
Analog inputs

Serial data communications
Parallel ports

MCU
Single
Chip
Target
System
Circuitry

MCU
Expanded
Multiplexed
Target
System
Circuitry

A12-A15
PBO-PB7
Single)
Chip ADO-AD7 | | A8-A15
MCU <
PC7-PCO PI/O AQ-A7 A0-A15
: ort B
ADDRESS
<> (PRU) ~ Demultiplexer u U u
PAO-PA7 >
i | ‘ | ‘ 8K RAM/ 8K RAM/
‘ > 16K USER USER USER
PEO-PE7 .
PDO-PDG EPROM ROM #1 ROM #2 EEPROM
MCU
(68HC11)
>
‘ PDO-PD5 H | ‘ S Bus <
L=>| Transceiver
PEO-PE7 111 S —
PAO-PA7
*Not Used for AX Operation
A8 A15 2?'5
Expanded
Multiplexed
1/0 EEPROM
AIDO AID7 Port |<— MCU
AIDO-AD7 | Programmer
Figure 1.4

Block diagram of a microcontroller

Terminal
and
Host

1/0
Port
(DUART)

TxD
—
RxD
—_—

Control
«—>

TxD
«—
RxD
—_

Control
“—>

Terminal

Host Computer

S$J19]|0J1U0D pappaqwid [ednde.d v

13

Introduction 5

This may seem like a large number of components, but grasping the complete
microcontroller system becomes very easy once each of the individual components is
understood.

In a microcontroller, the CPU uses an interna parallel address and data bus to
communicate with memory components like RAM, EEPROM and ROM. It also uses this
internal bus to talk to communication systems, 1/O ports and registers. The internal
microcontroller memory components such as RAM, ROM, EPROM and EEPROMSs are
used to store (either temporary or permanently) data and program instructions. The
internal registers are used to manage temporary bytes of data, like addressing for the
program. The serial communications section lets the microcontroller communicate with
other devices viaa communication standard such as RS-232 or RS-485. The parallel ports
suchas A, B, C, D and E can be used to transfer data to and from external memory chips
or devices. These ports can be used to read and write to devices like keyboards and
LCDs. An externa paralel data bus can also be used by the microcontroller to activate or
read external devices like switches, relays, and LEDs. The digital I/0O and analog inputs
are used to bring inputs and outputs to and from the microcontroller.

Assembly language programming

Often when assembly language programming is mentioned programmers groan that it is
al too hard and difficult. Assembly programming is actually easy and simple (almost too
easy). The two best things about assembly language programming is the control it gives
the programmer over the microcontroller and the minimal instructions needed to do the
job. Using BASIC or C++ is compared by some to using a chain saw to peel an egg. From
a functional point of view, using BASIC, C++ or some other high-level language is
simple and straightforward but it does use a huge amount of memory compared to
assembly language. This limits the size of the program that the programmer can load into
the microcontroller. Chip manufactures have gone to great lengths to include RAM, ROM
and EEPROM on board the microcontroller. This memory is usually only hundreds of
bytes. Programming the microcontroller without using external memory chips is almost
impossible using BASIC or some other high level languages. Therefore, assembly
language becomes the only option.

Programming is often compared to painting a picture. One difference though is that in
art it is often unclear when the painting is finished. In programming the program is done
when it does what it was designed to do. This can be defined and specified before the
program is written. Strangely enough, this step of exacting specification is often
overlooked and the program is just let to evolve. As in most endeavors, preparation is
everything. The participants in the programming process should spend a large amount of
time preparing for the writing of the program.

In its simplest form, the program is a sequential set or list of instructions that tell the
microcontroller what to do. Each step in the process is done in a specific order. The
process is divided up into separate individual sections called subroutines. A subroutineis
a smal program that performs some tiny function within the overall program. An
example of this could be starting a car. The sequence of events that are used to start a car
could be called a subroutine within the overall program of driving the car. It is a very
specific and defined sequence of acts or instructions. It is stand-alone and can be repeated
when necessary. In programming language, it would go something like...

6 Practical Embedded Controllers

Figure 1.5
Sarting the car

Jump to * Start the Car’

Start the Car Put key inignition

Started Turn key clockwise to the start position
Has the car started?
If the car has started, release the key and go to ‘ End’
If not, continue to hold the key in the start position
Loop to * Started’

End Return to main program (i.e. drive the car)

Sat the Car

Put Key in
Ignition

TurnClodkwise

HasT he Car
Started?

Drive the Caxr

Figure 1.6
Flow chart to start the car

1.4

Introduction 7

Of course, this program is simplistic because we have not put in al the possibilities.
Such as; if the car did not start the driver would run the battery down by continualy
holding the key in the start position. Also what are the parameters that define that the car
has started? A main program is made up of many of these subroutines. This method of
programming is simple and easy to troubleshoot by the programmer. Also notice the flow
chart in Figure 1.6. Thisis an easy way of designing the program before writing any code.
This helps the programmer see the program in an overall form and therefore see mistakes
before they happen. One thing that is not shown in the above example is where in the
memory map of the microcontroller isthe * Start the Car’ program located.

A memory map is a list of the address locations where the program, ports and various
other devices reside in the microcontroller system.

The memory map can be separated into three parts:

e Addresslocations of RAM, ROM, EPROM and EEPROM
e Addresslocations of ‘vectored’ jump locations
e Addresslocation of input, output and communications |locations

Note: A vector is the location of the beginning of a subroutine or function of the
program. A vector could be a memory location, where a jump is located, that branches to
a keypad subroutine, (more about this later).

The programmer uses the memory map in the same way a road map would be used by a
driver to find his’/her way to the destination. The road map might indicate that the location
of atown is at A/3. The driver (assuming that the driver wants to go to the town) would
look on the map and find A/3. The driver would then take the road that goes to that town.
The memory map of a microcontroller might say that the external RAM is located at
$CO000. This address is a hexadecimal address that the programmer puts in the start of the
program. Once the program is loaded into RAM memory location at $C000, a subroutine
could jump or ‘vector’ to thislocation at any time and the program would start there.

Inputs and outputs

Digital inputs and outputs on the microcontroller are located within the ports A, B, C, D,
or E. Some of these ports are defined as fixed inputs or outputs while others are bi-
directional. Ports that can be setup within the program as either inputs or outputs are
called bi-directiona 1/0. The ports have registers that the programmer uses to set up the
bi-directional port. A single bit changed from a O to a 1 in a particular register can
determine whether aline on a port in an input or an output. The programmer stores a hex
number in the register to set the 1/0O line in the port to be an input or output. This type of
port is called a definable port.

Figure1.7
Typical inputs and outputs

8 Practical Embedded Controllers

1.5

The definable 1/0 is accessed by setting up aregister located at unique addresses in the
memory map. Registers are usually 8 bit devices where each bit has a special function. A
typical example would be the register at $1009. This is the data direction register of port
D on aHC11 microcontroller. If the programmer was to store #$10 or 00010000 in binary
to this register, bit 4 of port D would be defined as an output. If the programmer sent
#$00 or 00000000 to $1009 then port D bit 4 would be an input. The programmer could
then store a hex value in port D and depending on the value stored the line would be on or
off. Remember in digital electronics a one or zero can be either ‘ON’ or ‘OFF depending
on the way it has been designed. (In fact, in most systemsa zerois‘ON’.)

Analog inputs are sometimes included on the microcontroller, but most of the time they
are a function of external chips to the microcontroller. Even microcontrollers that have
analog inputs on board usualy have very few and therefore the designer must use
external chips for more inputs. An analog input measures voltage and then stores in
memory as a binary number. The rate at which the microcontroller reads or samples the
voltage is called the sample rate. The amount of numbers that define the voltage is called
the resolution. The binary number that represents the voltage is transferred to memory
and ultimately to a database. This database is then displayed, printed or used by other
devicesfor control.

Data communication

RS-232, 422, and 485 are slowly giving way to USB, Firewire and Ethernet. Because of
the limitations of this book, the author has confined the discussion here to the first set. In
the near future USB, Firewire and Ethernet will probably be used extensively to
communicate to microcontrollers, but as of thiswriting RS-232, 422, and 485 are still the
most common methods of interconnecting embedded controllers.

Figure1.8
RS-232 comm port on a computer

Serial asynchronous and synchronous communications are two of the most popular
types of communication used in industry today. RS-232, RS-422 and RS-485 voltage
standards are usually asynchronous communications systems. Because asynchronous is
very simple and convenient, it is still very common in data communications. This will
continue for the next few years or decades. Asynchronous does have its problems, such as

1.6

Introduction 9

slow speeds and large overheads, but often its ease of use overcomes these limitations. In
industry the catch phraseis ‘if it works and it's cheap then use it’. Asynchronous is used
because every computer has an RS-232 port and the interface chips that connect to the
microcontroller for RS-232 are cheap, easy to use and readily available.

Synchronous systems are becoming popular because of the need for higher data
communication speeds. Synchronous data communications use clocking, start characters
and error checking to maintain high-speed communications. Along with the lack of start
bits, stop bits and other overheads, synchronous systems can transfer data thousands and
even millions of times faster then asynchronous systems. The most common voltage
standards using asynchronous communication systems are RS-422 and RS-485. The two
fastest growing synchronous data communication systems in use today are the USB and
Ethernet. One day they may take over from RS-232, RS-422, and RS-485.

Figure1.9
USB connector

Noise reduction

Noise reduction in electronic circuits is fast becoming a high priority in printed circuit
board and system design. There are two issues with respect to noise reduction in
controller systems. One is preventing noise being transmitted from the device into the
outside world, and the other is installing systems that are less susceptible to noise from
outside sources.

The simplest way to transmit noise is with fast changing current flowing through an
exposed conductor. As electronics on the board become faster and faster the chances that
the PCB will radiate EMI frequencies and noise levels will increase. The PCB can
therefore be thought of as a radio transmitter of noise. The typica PCB has many
different high-speed currents flowing through exposed conductors on the board. All the
PCB needs is an antenna (input and output wires) and it becomes a noise transmitting
device.

Figure 1.10
Noise reduction on a printed circuit board

10 Practical Embedded Controllers

1.7

PLCs, DCSs and other control systems are very susceptible to noise from external
sources. The most common way noise gets inside a controller is through the wiring in the
cable run. The wire connecting the controller to sensors, PCs and other equipment acts
like an antenna to the noise created by other electrical and electronic equipment. The wire
that connects to controllers can be thought of as both a transmitting and receiving
antenna. It is important therefore to look at noise from the controllers point of view as
both a conveyor and recipient of noise.

We find that the reduction of noise can be as easy as either moving the offending
transmitting wire away from the victim wire or moving the victim wire away from the
broadcasting wire. In the past, noise reduction, troubleshooting and repair was done by
using oscilloscopes and filters. Since the advent of the digital revolution the rules have
changed and now we find that not only is equipment more susceptible to noise but
traditional methods of troubleshooting and repair do not work. When repairing noisy
circuits, filters should be kept at a minimum as they often can make the problem worse.
This is because filters reduce the separation between our equipment and ground. Often
noise is coupled to our equipment through the ground connection.

Grounding solutions

Grounding, with respect to noise reduction and proper operation of equipment can be
divided into two areas; PCB track grounds and equipment ground. Grounding practicesin
some ways has changed alot in the last twenty years and in other ways they have stayed
the same. The greatest changes have been in the area of the new EMC requirements of
electronic devices and especially in high-speed digital equipment.

In PCB design there are four areas of noise reduction:

o Placement of components

o Track placement

e Ground planes

e 1D and 3D Faraday boxes
Figure1.11

Faraday box on a PCB

1.8

Introduction 11

Each of these areas has gone through substantial changes of late and will continue to
evolve over the years as noise reduction requirements change. The need for increased
noise reduction from a PCB/EMI radiation point of view is universally expected to
increase in the future. Proper placement of components has become critical when it
comes to chip to chip noise transfer on a PCB. Track placement, track spacing and track
size becomes an issue on both internal and external EMI. Ground planes have become an
important tool for the designer in the reduction of noise on PCBs.

On the other side, once the equipment has been designed and installed, it is necessary to
do everything possible to protect it from noise and external high voltages such as
lightning. Grounds were once seen as the best protection against noise in electrical
systems, but since the introduction of highly sensitive digital electronics, grounds have
become noise conduits into digital equipment. The problem is that on one hand ground
can be anoise source, but it is highly necessary for lightning and static voltage protection.
This conflict has caused a lot of controversy in the controller and electrical industry.
Having said that, it is possible through proper installation to build systems that give a
high level of noise and lightning protection.

Installation techniques

Installation of controllers, sensors and wire systems is an important part of the overal
quality of a system. The best-designed system will fail if the installation is not done
correctly. It has been proven that approximately 60% of failures in working equipment
are due to bad connections. These failures can usually be traced back to improper
installation with only a small percentage of that 60% being part falure. Proper
installation is a very subjective thing and although there are many standards; most
installers rely on their experience and persona training. Unfortunately, as technology
evolves, installers don’'t often have the opportunity to keep up with those changes.

Proper ingtallation of connections and terminations is often an overlooked or
undervalued skill in the reduction of failures in electronic systems. If screw connectors
are under or over tightened, the connection will fail. Soldering can be used to increase the
quality of a connection, but sometimes it will add to the possible failure of a connection.
Using crimp connectors can be fast and good connections, but if installed incorrectly they
can cause problems. The two most common causes of bad connections and terminations
are not following the correct installation procedures or using the wrong crimp tool.

e = Qm—

P P T, L P 2, I, P [g g g

Figure1.12
A good installation

12 Practical Embedded Controllers

1.9

Cable runs and conduit systems are used to hold the wires that connect the equipment.
This at first doesn't sound too important, but often the type and placement of the cable
runs can affect the noise quality of our system. The cablesin a cable run can be thought
of as antennae connected to the equipment. The cables connecting the equipment are the
largest part of the system and this is where most noise is transferred from one system to
another. If large voltage and current carrying cables are placed next to highly sensitive
signal wires, problems will be inevitable. Conduits made of steel will have a different and
better effect on the reduction of noise than, say, one made of PVC.

Conclusion

Although it is impossible to cover every detail associated with the subject of embedded
control systems, it is hoped that this book will give the reader some hard hitting practical
knowledge concerning the troubleshooting and design of embedded controllers. This
chapter started with the make up of typical microcontrollers, then moved to functional
methods of troubleshooting. Repair of microcontroller systems was discussed and then an
introduction to real techniques in installation. The reader should come away with
practical introduction to controller systems.

Although the reader may never design the hardware or software associated with an
embedded controller, this book should give the reader an overview of the inter-workings
of the microcontroller. This understanding can help in the specification, use or even the
sale of controller equipment. To troubleshoot an embedded microcontroller system it is
important to understand the inputs, outputs and the way the controller communicates.
Noise reduction and proper installation are important subjects from the point of view of
making a system work properly. As time goes on the microcontroller will become an
increasingly important part of our lives. It is to this end that the author hopes the reader
finds this book of some assistance.

2.1

Microcontroller basics

Objectives

When you have completed this chapter, you will be able to:

o Describe the basic building blocks and functions of microcontrollers

e Explain what numbering systems are used in microcontrollers

o Describe gates and their function in a microcontroller

¢ Describe accumulators and their function

e Describethe X, Y and stack registers

o Explain the difference between asynchronous and synchronous
communications

¢ Explain why power systems are important to microcontrollers

Introduction

This chapter gives an introduction to the microcontroller, the main component of all
embedded controller systems. The microcontroller is the most powerful chip in the
arsenal of the electronic designer. At the beginning of the project the designer often starts
with microcontroller selection. Everything that flows on in the design will depend on the
intelligence, functionality and availability of the microcontroller. Some experienced
engineers may find this chapter a little too basic and the absolute beginner may find this
chapter a bit advanced but it is important to have an understanding of the basics of
microcontrollers.

14 Practical Embedded Controllers

MCU
Single
Chip
Target
System
Cireuitry

MCU
Expanded
Multiplexed
Target
Systemn
Circuitry

PEO PET
< Single
,;'&'E ’ A»DO-A/D?H AB-A15
<

A12-A15

110 A5 XD
PCIPCC | Port L> ADDRESS AC-A15 i}
(PRU} Demultiplexer u U u u—> RXD E
2
D S— Conrol
arminal | €—»
PAO-PA7 [\ skRAMI | | ek RAW and
e 111 2 16K USER USER USER Hosl
> Menitor | | pspuDo | | PSEUDO | | PSEUDO 110
PDO-PDS EPROM | | roM#1 ROM#2 | | EEPROM Port
(DUART) | TxD
— 5
Mmcu 2
{B8HC11) RxD, £
Q
O-PD5 Canrol @
[PDO-PD5 | [H g Bus. E
PEO-PE7 | [| [L=>| Transceiver
> EDO-ED7
FAC-FA7
AR AIE e
Expanded [<—J
Multiplexed
110 EEPROM
ADOAD? Part <,: MCU
ADC-AIGS Pl‘ogrammer
Figure2.1

Block diagram of the microcontroller

Microcontrollers in embedded controllers are sequentially programmable devices. This
means that they execute one function at atime. The program is held in memory like RAM
(random access memory) in the form of an eight-bit (1 byte) binary number. We usually
think of the byte in hexadecimal form. An example of this would be 46h. The little ‘h’
after 46 tell usthat the 4-6 is a hexadecimal number and not forty-six. The engineer could
use little h, $, H or OX to indicate a hex number. In programming we often use $ as an
indication of a hex number ($A3F1). Sometimes we need to convert a decimal number
into an ASCII code number. To do this, first the decimal number 3 would be converted
into 03h. Then we would add 30h to 03h and get the ASCI1 33h.

The instructions that are used to tell the microcontroller what to do are included in an
instruction set. This instruction set changes from microcontroller to microcontroller as
different manufactures and even different chip sets within a manufacturer have different
instruction sets. The good thing is that most instruction sets are similar. This makes it
easy to change from one microcontroller to another for the experienced designer. The
instructions that are used to program the microcontroller can be grouped into different
sections. These sections make it easier to understand the ultimate function of the
instructions.

Typical instruction groups would be:

o Logical operations

¢ L oads and stores

o Arithmetic functions

¢ Shifts and rotates

e Datatesting and bit manipulation
e Stack and index registers

o Condition code registers

e Branches

e Jumps calls and interrupt handling

Microcontroller basics 15

The microcontroller holds program data in temporary storage locations within the
microcontroller called accumulators or registers. The accumulators are locations that can
be added to and therefore accumulate data. Most microcontrollers have either 8-bit or
16-bit accumulators. The 68HC11 has two 8-bit accumulators that can be accessed as one
16-bit accumulator (A (8-bit) + B (8-bit) = D (16-hit)). If A has $30 and B has $03 then D
has $3003. Accumulator D is actually accumulator A and accumulator B. If you change D
you will be changing A and B accumulators. The registers such as X and Y are temporary
storage areas that are used for holding 16-bit data like addresses and pointers (such as
$DEO00). The X and Y registers can hold addresses, other register values and 1/0O port
locations. Pointers are addresses that specify the locations of something in the
microcontroller or program. The program might ask a register for the address that ‘ points
to the location of port D. The register might then come back with an address of $1008.
This would be the location of port D. The program might then ask the microcontroller to
place something in port D ($1008).

PULSE ACCUMGLATCR | I_[}o‘(«— <« FA7
! pos —> ——» PAS
2 005 —»| 5 ——> PA5
TMCP 004 | b ——> PA4
005 | —»| &5 ——> PA3
= 101 |[¢—— & |[«——PA2
2 PCRIODIC INTERRUPT 102 | < FA1
(:F) OCP WATCHDOG 101 | e— <«——PA0
= —
()
a _ —_—
L Als P37 | « < <
Al4 P35 | < < <
Al3 Pzt | < o |« <
Al2 PH | < % < <
Al raa | 4 = e <
AlD raz | < o |« <
Ag P31 | ¢ < <
A8 P30 < < <
AD7 FCT | < > o |« > < >
ADB PCs |« S S |« > < >
AD5 P | < > 3 Z |« S < >
AD4 P4 =
ol > = > <« >
AD3 Pes | o A m D > < <
ADZ2 Pz < »| O - < S < >
AD1 PC | 4 > 2 l« » < >
ADO PCD < > e < > < >
HIVT STRE | < R
AS STRA | <€ > <
: £z
=] m
— <«—— PET
«— «—— FEB
= +—— g |«—— FEs
& — Q |[—— FE
T AT +— = |«—— FE3
(¥ «— M |——— FPE2
o
- CONVERTER PE1
% «— «—— PED
—
< VPEFH
< VPEFL

Figure2.2
Block diagram of the A, B, C, D and E ports

The microcontroller not only can transfer information to locations within itself but also
is able to send data to the outside world through data ports. The HC11 has five data ports
(A, B, C, D (not to be confused with accumulator D) and E). These ports are used for

16 Practical Embedded Controllers

digital inputs, digital outputs and analog inputs. Some of the ports are fixed as inputs or
outputs, while others are definable by the programmer. An example of thisis port A. It
has three dedicated inputs, four dedicated outputs and one definable input or output line.
Another example could be port B. All eight lines on port B are outputs and they can't be
anything else.

The HC11l has two communication modes that share one port. One mode is
asynchronous and the other is synchronous. Either the asynchronous (SCI) or the
synchronous (SPI) modes can use two lines of port D as a transmit and receive lines. It is
not possible to send or receive Asynchronous and Synchronous data at the same time as
they use the same two lines for TX and RX. The other lines on port D are used for
configuration of the transmit and receive system. The communication system is used to
talk to either a PC or other controllers on some type of physical system such as RS-232,
RS-485 or even fiber optic cables.

EE» < <+« P05
(]
SCK |[¢&——— = <+ R[4
SPI)
MG |[é—| = | O |e—> P05
G| =
'
MO [—| X | & |« PD2
[m] (i
=
sCl ™o F— o <+« P01
RxD |« <> P[0

Figure2.3
Block diagram of the communications ports (SCI and SPI)

Microcontrollers must get power from somewhere and usualy this is from mains
supply, athough this may change in the future. Mains power has many problems such as
spikes, brownouts and blackouts. In the past it has been somewhat reliable, but this seems
to be changing with brownouts and total loss of mains happening more and more often.
Solar power and battery power are on the horizon for power systems, but this doesn’'t
solve all of the problems of mains power. Brownouts and blackouts can and often happen
on solar and battery systems. The two systems will increasingly be used together, one as
backup to the other. When these problems do happen, it is important that the
microcontroller handle the problem invisibly. Both good PCB design and power system
design are used to reduce the potential cause and effect of spikes, brownouts and
blackouts. Microcontrollers are often used to control mains/solar power systems.

Another part of having a quality microcontroller system is consistent clocking. One of
the greatest advances in electronics in the last twenty years has been in the area of
clocking. Placement of the oscillator on the PCB is very important from both a functional
point of view and also from an EMC view. If the crystal is too far away from the
microcontroller it may cause excessive noise or it may not work at all. If it istoo closeto
certain chips it will fail or at the least be unreliable. In the design of controllers it is
important to choose the right oscillator, as this has a direct bearing on the speeds of the
data communication.

2.2

221

Microcontroller basics 17

Number systems — binary, hex, and decimal

Since data within the microcontroller is held as numbers it is important to understand
some basics about number systems. Most people find working with numbers to be boring
or abit too hard, but everything in this book is based on numbers.

Bits, dibits, nibbles, bytes, words and long words

A bit isaone or a zero. This seems obvious enough, but it is important to remember that
the one and zero are real voltages on the printed circuit board (PCB). A oneis usualy a
+5 volt level with a zero being a ground or 0O volt level. Often people that are new to
digital electronics think that a one is on and a zero is off. This is not necessarily true. In
fact often azeroison and aoneis off. It istherefore not a good idea to think in on and off
terms when it comes to microcontrollers. It is better to think in ones or zeros or voltage
levels.

00 00 0 8 4 2 1
00 0 1 1 1010 —> 8+0+2+0 —
0 0 10 2
00 11 3 8 4 2 1
0100 4 1700 0O
010 1 5
0110 6
0111 7
100 0 8 <
10 0 1 9
1010 A <«
:]I?:J:) g 8 4 2 1 8 4 2 1
11 0 1 D 0 0 1 0 01¢C ASCI|
1110 E 3 2 —— (2)
11 1 1 F
128 64 32 16 8 4 2 1
0 0 0 100C0O

128 64 32 16 8 4 2 1

1 1
20 hex

40 Decimal

Table2.1
Binary, nibble, hex and decimal conversion

A dibit istwo bitsin arow, such as 10 or 11 or 00 or 01. Notice that there are only four
possible combinations with a dibit. A nibble is four bits and starts at 0000 and goes to
1111. The decimal equivalent of the nibble is 0 to 15. The hex equivalent is 0 to F (see
Table 2.1). Notice that the decimal values of each place are 8 then 4 then 2 then 1 asread
from left to right. This is the same as 1000 then 100 then 10 then 1 in decimal. A byteis

18 Practical Embedded Controllers

2.2.2

2.2.3

two nibbles and therefore 8 bits. The byte is usually written as $3F or 34h or 34hex or
0X34 depending on the school you went to. This book will use the $ sign as a
representation of hex because that’s the way it is represented in most assembly language
programming. The decimal range for a byte is 0 to 256. The hex equivalent is 00 to FF
(see Table 2.1). All instructions in an 8-bit microcontroller are usually given in hex bytes.
Good microcontroller engineersthink in hex. A digital word is 16 bits or two bytes. This
is used mostly in registers within the microcontroller. Addresses in an 8-bit data bus by
16-bit address bus microcontroller are written as a 16-bit word.

A busisagroup of paralel lineson aPCB or in amicrocontroller chip that carry the 1s
and Os (voltages) to acommon point.

There are three types of buses on a microcontroller:

e Addressbus: This bus holds the 16-bit address of the port or register
e Databus: This bus holds the 8-bit data from the port or register
e Control bus: This bus holds the bits that control chips and devices

Conversion from binary to hexadecimal

Often in the program it is important to convert from binary to hexadecimal. An example
of this would be when writing to a register. If you wanted to set bit O in aregistertoal
you would send the byte $01. This seems pretty straightforward but what if you wanted to
turn on bit 7, 5 and 2. A 10100100 in binary ($A4 in hex) would be sent. To convert from
binary to hex you first split the 8 bits into two sections of binary nibbles. Then convert
the left or most significant binary nibble into hex. Then do the same for the least
significant binary nibble on the right. The two hex nibbles are then put next to each other
and the conversion is done.

ASCII, hexadecimal and BCD

=
=)
H
8
g

de

e me a0 m e omm

—IOTMMOUOW>
L]
IOTVOZ=Erxec
| |
L]
N<XSE<cH®

-
*

Smme mmee

Periogd e=e=e= mmeemm | mmmmm

Table2.2
Morse code

In the early days of data communication Morse code was used as the language to send
data. One problem with Morse code was that the number of characters was limited and
the other is that there is a different number of bits for various characters. When
microcontrollers were developed, it was necessary to develop a code that was flexible and
yet had the same number of bits for every character. ASCIlI was developed and is the
most common code used in electronics today. Often people get confused because the
binary and hex can represent ASCIl. Remember all hex characters can be converted into

224

Microcontroller basics 19

binary and all binary numbers can be converted to hex. Another confusion with ASCII is
there are two versions. There is the basic 7-bit version and the 8-bit extended version. It is
easy to remember that the 7-bit set is just a sub-set of the 8 version. Because the 7-bit set
has most of the characters that we use, often just the 7-bit section is used instead of the
complete 8-bit ASCII character set. A good way of thinking of thisisthat you only use a
small portion of the total English words available on a day to day basis. This begs the
question, what do we do with the left over bit (bit 7)(remember it is bit O through bit 7)?
Usually we just set it to 0 and ignoreit.

MEE
HEX| o 1 2 s | | 5| 8| 7
HEX | BIN | 000 001 010 | o1l | 100 | 101 | 110 | 111

0 | 0000 | (NUL) | (DLE) | Space | 0 | @ | F ' P
I [oo01 | SCH) | (DCL) | ¢ L&l el al &
2 |ooto] STX) | Dy | " : | B | BR[| b r
3 [ooll | (ETX) | (DC3) | # 3 & | = c s
4 | 0100 | (EQT) | (DG4 | § s | Dl T | 4 I
ISB [5 | 0101 | (ENQ | (NAK)| % 5 E | U | ¢ u
6 | 0110 | (ACK)| SYN) | & 6§ | F | V| f |
7 | o1l | (BEL) | (ETE ! Tl wl| ¢ | w
§ | 1000 | (BS) |(CAN)| s | H| x| k| x
9 | 1001 | (HT) | (EM)] 9 E | ¥ | ¥
A | 1010 | (LF) | (SUB) | *] e | z
B | 1010 | (VT) | (ESC) | + ; K | I k]
C | 1100 | (FF) | (FS) ; < | L | 1 |
D | 1101 | (CR) | (GS) = | M| 1 [= | 3
E | 1110 | (SO | (BS) : =l H] " & | ~

F | 1111 | 8y | (US) / : | o | | e [DEL

Table?2.3
ASCII table

Converting from ASCII to BCD and hex

Binary coded decimal (BCD) is a sub-set of hex from $0 to $9. BCD is used to do
arithmetic functions within programs. It is not very obvious to the most casual observer
what the result of adding $33 and $31 in ASCII is in decimal. Note that in the ASCII
table (Table 2.3) that $33 is 3 and $31 is 1 decimal. It would be easy for us to add them,
but how does the microcontroller do it? The microcontroller converts the numbers into
BCD and then adds them. It first removes or subtracts $30 from each character. This
leaves us with $03 and $01 BCD. Remember that BCD is the sub-set of hex from $0 to
$9. The addition of $03 and $01 is $04. It then adds $30 to the result and it gets $34 or 4
decimal in ASCII.

20 Practical Embedded Controllers

2.3

231

Gates — AND, OR, XOR and NOT gates

One of the most powerful functions of the microcontroller is its ability to replace
hardware with software functions. A good example of this is the hardware gates, AND,
OR, XOR and NOT gates. Because hardware takes up space on the PCBs, they increase
the cost of the product. It can be a large benefit to replace hardware with software
functions. Once the software is written the continued product cost is minimal and can be
considered almost nil.

So how does the microcontroller replace a physical gate with a virtual gate? The
method is simple; the microcontroller reads the information from a port or address
location and then performs the gate function in the microcontroller. The result of the
operation is then sent to a port or placed in another address location. This makes the
microcontroller very flexible and powerful. When using hardware gate functions, the
output of the gate is usually located on the same physical chip as the inputs. With
microcontrollers, the output can be anywhere on the system. The result can even be stored
and used later in another operation.

{1 9 9 D

Figure2.4
AND, OR, XOR and NOT gates

AND gates — physical and virtual

The AND gate is a device with two or more inputs, where the result is an AND function
of the inputs. Figure 2.5 shows that only when the two inputs (x and y) are ones will the
output be a one. In a physical gate, chips would be used to make this happen, but in a
microcontroller the AND instruction performs this operation. If x =1andy =0orif x=0
and y = 1 then the output is 0. If x and y are 0 then the output is 0. And gates are often
used for what is called masking. Masking is seeing the bits you want and ignoring or
disregarding the rest. Masking was used in early computer punch cards. Certain holes
would be masked so that only, say, the citiesin one particular state would be collected or
the cities with the same name could be masked and the others disregarded. When a binary
number on a port is masked using the AND function, only the bits we are interested in
come through and the rest are disregarded. In Figure 2.5 it can be seen that the bits on
the left are the ones we are interested in and the bits on the right are ignored. This
masking function is often used to view the condition (1 or 0) of a bit or bitsin aregister,
port or address |ocation.

out
out

‘<| |><

__\oox
e L=l k=S
1 O0O|0|0O

Figure 2.5
AND gate truth table and masking

2.3.2

2.3.3

Microcontroller basics 21

OR gates — physical and virtual

The OR gate function is used in both physical and microcontroller operationsto seeif any
of the inputs are a 1. As seen in Figure 2.6 the output of the gate isa 1 if any or both
inputs are a 1. If both inputs are Os then the output is a 0. This gate is used to alow two
devices to turn on the same thing. An example of this would be two switches, one at each
end of an assembly line that can turn on the lights in the area. Combining the OR gate
with the AND gate it would be possible to turn on the lights when either (OR) switch is
thrown and if it is dark enough in the area (AND). In microcontrollers this is used when
two inputs, either from outside locations such a port or from inside the controller such as
the state of a memory bit, control an output.

X out out

y

Rk, |O|O|X
RlOo|IrR|Oo|IK

S E=

Figure 2.6
OR gate truth table

XOR gates — physical and virtual

XOR gates are exclusive OR gates. The exclusive OR gate defines that the output isa 1
only if the inputs are different (i.e. oneinput isa 1 and the other input isa0). Any single
1 creates a 1 on the output, but if the input has two Os or two 1s then the output is 0. This
gate works similar to the example of the OR gate but with one important difference. In
the OR gate example if the lights were on, both switches would have to be placed in the
off position for the lights to be turned off. The last person out at night would have to
walk down to the end of the assembly line and turn all the switches off. Remember in a
normal OR gate both inputs have to be 0 for the output to be 0 and if both inputs are 1s
then the output is a 1. With the XOR gate system if one switch is turned on (whether that
isal or 0 doesn’t matter) and then the other switch is turned on, the light will go off. In
this way the last person out can turn either switch and the light will go out. This system is
great for emergency switches, because either switch would turn off the machinery. In a
software-controlled microcontroller system this function cannot only be used on hardware
but also within the program.

X out X |Y |out

yﬁ> > olo]o
O|1] 1
1 (0|1
11110

Figure2.7
XOR gate truth table

22 Practical Embedded Controllers

234

2.4

241

NOT gates — physical and virtual

The NOT gate is used to reverse the input and place it on the output. This gate is often
used in conjunction with the AND, OR and XOR gates. The NOT gate is placed on the
input or output of the other gates to inverse the function of the gate. The software
equivalent of the NOT gate is the one’s compliment. This function inverts every bit. All
1s become Os and all Os become 1s. This instruction is useful in certain arithmetic
functions. One example of the use of the NOT gate would be if the output of a function
was al and it was represented as ON, but the outside function was looking for a0 as ON.
The NOT gate would be put in between to changethe 1 to a0.

X out X |out
0|1
110

Figure 2.8
NOT gate truth table

Accumulators, A, B and D

When writing a program it is necessary to have some temporary place to hold the data
while the program is doing something else. The accumulators as mentioned before are
8-hit registers that temporarily hold one byte of data and have the ability to accumulate
data. This means that you can add or subtract bits from this register. For example, if the
programmer wanted to save some data before sending it to a port, accumulator A or B
could be loaded with the data. The instruction for loading accumulator A is LDAA. That
is LoaD Accumulator A. To send the data to an accumulator the programmer might use
STAA, that is STore Accumulator A.

ACCUMULATOR A ACCUMULATOR B w

3F 47

ACCUMULATOR D }

3F47

Figure2.9
Diagram of the A, B and D accumulators

Addressing modes

The addressing mode defines how the instructions will access the memory. There are six
types of modes or addressing.

Immediate

This mode of addressing takes the data after the instruction and places it in the location as
defined by the instruction. An example of this could be LDAA #$4F. The instruction

24.2

Microcontroller basics 23

loads $4F in accumulator A immediately. The LDAA instruction defines where the data
is stored.

Direct

This mode uses the first 256 bytes of RAM in memory. This address range starts at $0000
and ends at $00FF. An example of this could be STAA $2A. This example would store
the data that is in accumulator A directly into address $002A. The $00 part of the address
isimplied.

Extended

The extended mode can access an address anywhere in the total range of addresses from
$0000 to $FFFF. An example of extended mode is LDAA $DEQO. This loads
accumulator A with the data located in address $DEQO. This addressing extends to the
whole addressing range of the microcontroller. Remember that the data held in an address
isone byte.

Indexed

The indexed mode of addressing uses the index registers X or Y to hold or point to the
address that is used in the instruction. This addressing mode can use offsets as shown in

the example
#LDX #START This points to the address of START
STAA $01,X Thisstoreswhat isA at X (START) address plus 1

If START is defined as address $DF00 then the data in A will be placed in address
$DFO1.

Relative

Relative addressing is used in branching and is limited to +127 and —128 addresses from
the branch. This mode is relative to the address location of the branch. An example of
relative addressing is BNE START, where START must be within +127 addresses of the
branch or —128 addresses of the branch.

Inherent
The inherent mode of addressing is used by instructions that hold the address within the
instruction. An example of this addressing mode is RTS. This instruction is return to
subroutine. The programmer doesn’t need to tell the instruction where to return it is
inherent.

Loading, storing and transferring accumulators

An example of thisloading and storing datain an accumulator is...

LDAA #$39

STAA $1008

In this example the number 9 in ASCII ($39) is loaded in to accumulator A. The data

($39) would then be stored in address $1008. Port D is address $1008 in an HC11
microcontroller. Data that is being held in an accumulator can be transferred from one
accumulator to another. This would be done with the commands, TAB or TBA. That is
transfer accumulator A to accumulator B (TAB) and transfer accumulator B to
accumulator A (TBA). Accumulator D is a combination of A and B, with A being the
most significant byte and B being the least significant byte.

24 Practical Embedded Controllers

2.4.3

244

2.4.5

2.4.6

Add, subtract, compare, increment and decrement A and B

Besides being loaded, stored and transferred the data in the accumulators can also be
added, subtracted and tested. The addition, subtraction, compare, increment or decrement
instructions can be from one accumulator to another, from the X or Y registers to an
accumulator or from amemory location to an index register. Accumulator A can be added
to B with the command ABA, which is Add accumulator A to accumulator B. The
accumulators can also be added to the X and Y registers. The problem with this addition
isthat the X and Y registers are 16-bit register and the accumulators are 8 bit. This means
that the 8 bits in the accumulator will be added to the least significant byte in the X or Y
register. The instruction for this addition isABX or ABY.

Comparing of the accumulators to each other, X or Y registers or amemory location is
used to check if the data in the accumulator is the same or different from what was
expected. This is used extensively to stay in or exit a loop in a program. Common
instructions used in program loops are CMPA and CMPB, athough CBA (compare A to
B) is also used. It is also common sometimes to compare accumulator D to the data in a
memory location with the instruction CPD.

The increment and decrement instructions are used by the program to increase or
decrease the contents of the accumulators or index registers. This can be used to count
down or up within aloop.

AND, OR and test bits

If the programmer wants to AND or OR bits in a particular memory address, the
instructions ANDA or ORA could be used. Thisis alogical AND and is the same as the
physically ANDing the bits. ANDing and ORing are used for bit masking as described in
Section 2.2. Using the instructions ORAA or ORAB the programmer can do the ‘normal’
type of ORing process. By using the EORA or EORB the programmer can do an
exclusive OR function.

If the programmer wishes to just test one bit then the instructions BITA or BITB could
be used. This instruction only tests the bits defined in the data following the instruction.
An example of thismight be...

LDAA $1008 This loads accumulator A with the valuein port D (one byte)
BITA #$10 This checks to seeif bit 4 isa1 (00010000)

Note: This instruction does not change the data value in A. Whereas the instruction

ANDA changes the value of accumulator A.

Arithmetic and logical shifting and rotating

Shifting of bits in an accumulator or memory area is used typically in arithmetic
functions. The difference between a shift right and a rotate right is that in a rotate right
the most significant bit (bit 7) is shifted to bit 0. The data goes around and around in a
circle. In a shift right bit 7 either stays the same (arithmetic shift) or is moved into the
carry bit of the condition code register (logical shift). There is no difference between an
arithmetic shift left and alogical shift left.

Data and bit testing

As mentioned in 2.4.4 the instructions BITA or BITB are used to test one or more bitsin
an accumulator. Once the bits have been tested the usual next step is to branch if a
condition is true, false, high, low, equal or not equal. Some of the branching instructions
that are used for this are BEQ or BNE. These are Branch if EQua or Branch if Not

2.5

251

Microcontroller basics 25

Equal. Another pair that is common is BHI and BLO. These of course are branch if
higher and branch if lower. Two others are BHS and BLS. These instructions are branch
if higher or the same and branch if lower or the same. These instructions could be used in
the following program.

START LDAA $1008 Thisloads A with the datain port D.
BITA #3$31 This checksif A contains the bits (00110001)

BNE START If it does not then the program loopsto START.
STAA LCD If it doesthen it stores A in the LCD screen.

RTS Return to the main program

Registers — X, Y, the stack and ports

The X and Y registers

Since the HC11 microcontroller has a 16-bit wide address bus the 16-hit register is a
convenient place to temporarily hold addresses and other data needed by the
microcontroller. Eight-bit registers are usualy used for data or values, whereas 16-bit
registers are usualy used to hold addresses. Two index registers, X and Y are used in
68HC11 microcontrollers. These registers are used by the microcontroller to point to the
addresses of ports and other registers within the microcontroller. One advantage of using
the X and Y pointing feature is that the addresses held by these X or Y registers can be
manipulated within the program. For example, the address of a RAM memory location
like $CFOO could be placed in the X register. The RAM locations of $CF00 through
$CF09 could hold the numbers $30 through $39. These numbers are the ASCII numbers 0
to 9. The X register in the program could then be incremented by one. The information
retrieved from the RAM would be 0 to 9. This would be done with the following
example.

Bit 15 Bit 0
X REGISTER $1000 $1000 — «——
Bit 15 Bit 0
Y REGISTER $1008 $1008 —
Bit 15 Bit 0
$0047 $1000 $1000 «J
STACK ¢p045 $1008 $1008 «— —|
ADDRESS
PUSH X
PUSH Y
$0045 $1002 $1002 PULL X
PULL VY

Figure2.10
Diagram of the X, Y registers and stack

26 Practical Embedded Controllers

2.5.2

LDX $CF00 This points to address $CF0O

(loads X)
XAMPLE LDAA $00,X This loads the data in $CF00

(offset of 0)

STAA $1008 This stores the data to address $1008

INX This increments the address pointed
to by X

BRA XAMPLE This branches back to the beginning

In this example if the ASCIl numbers 30 to 39 were in addresses $CF00 to $CF09, then
the ASCII numbers 30 to 39, would be placed in port D ($1008).

Data direction registers are locations in the microcontroller where the programmer
places data to define the direction of the lines of the port. The registers hold binary
information bits O through 7. For example, a register may hold the bits 10001000, and we
would read the register as $88. The data direction register of port D is located at address
($1009). If we place a1 in bit O at address $1009, this would define bit O of port D
($1008) as an output, whereas if we place a 0 at bit 0 of $1009, bit O of port D would be
an input.

XAMPLE LDX $1009 Point to data direction register for
port D
LDAA #3501 Load A with 00000001
STAA $00,X Store A ($01) in $1009 (bit O output)

Bit O in Port D would then be configured as an output. We could then send a1 or O to
$1008 and the output of port D would have that value of bit 0. If we put alin bit O there
would be 5 volts on port D bit 0 (PDO), or if we put a0 in bit 0, there would be O volts on
the PDO pin.

The stack

The stack is a defined 16-bit register located somewhere in the microcontroller system.
The programmer usually sets up the location of the stack at the beginning of the program
with the instruction LDS. And example of this would be... LDS $50. This places the
bottom of the stack at address $0047 (see Figure 2.10). The stack in a microcontroller can
be compared to a stack of plates in a kitchen cupboard. The last plate put on the stack is
the first plate off. Often the program will push the address of something on the stack and
then go off and do something else. Later the program will come back and pull the address
off the stack. For every push instruction used in a subroutine there must be a push
instruction. Other wise the stack will get full and the program will stop. An example of
the correct way to use the stack is...

LDS $47 This defines the bottom of the stack

at $0047
XAMPLELDX $DFO00 This points to address $DF00

PSHX This puts bytes $00 at $0047 and $DF
at $0046

LDX $FFO0 This points to $FF00

STAA $00,X This stores the datain $FF00 in A

PULX This pulls the address $0047 from
the stack

STAB $00,X This stores the data at $DF00 in B

RTS

Microcontroller basics 27

Start Steck a .
0047 Stare Ain X
Paint to Address Pull $DFO0 from
XKAMPLE $DF00(X) the Stack
Push X StareBin X
Pant to Address
$FF00 (X) RTS

Figure2.11
Flow chart for push and pull

2.5.3 Ports A, B, C,Dand E

There are five input and output ports on the 68HC11, A B C, D and E. As mentioned
before these ports are used to send information to other chips and devices connected to
the microcontroller. Some of the ports can be defined by the programmer as inputs or
outputs. Ports A, B, C and D are 8-bit digital 1/0, whereas port E is an 8-bit analog input
port. Port A is often used for keypad or timer inputs. Ports B and C are often used as
address and data buses for external chips when used in expanded mode. Port D is used for
serial data communications and port E is used to measure voltages on externa analog
sensors. An example of using the data direction register is as follows

PORTD EQU $1008 Port D address
DDRD EQU $1009 Data direction control register
TXSET LDX #PORTD

LDY #DDRD

LDAA #3$00

STAA $00,Y

RTS

28 Practical Embedded Controllers

2.6

2.6.1

Pant to Part D

[l

Poirt to Data
Direction Regger

il

Load A with $00

|

Store $00 in Data
Direction Regger

[l

RTS

TXSET

Figure 2.12
Flow chart showing a setup on port D

Communications synchronous and asynchronous

The 68HC11 has two communications ports. These ports can be used with RS-232,
RS-485 or any other type of physica seridl communication standard. Serial
communication is used because a paralel communication system would use too many
wires and be very limited in overall distance. In the future we may see a movement to
paralel communications using fiber optic cables. This is because it is possible to send
many different colors of light down a single fiber optic cable at the same time and fiber
optic communications is immune to external noise. Using fiber optics it would be
possible to send parallel communications tens if not thousands of kilometers and at the
speed of light. For the moment we are limited to serial communications. Within seria
communications there are two basic transmission modes, asynchronous and synchronous.

Asynchronous character communications

Asynchronous communication was developed on teletypes and is still being used today
because it is simple and available. Often asynchronous is used because it is available on
all computers and is cheap (less then $5US per port). It is also used because it is simple
and easy for the programmer to develop an asynchronous communication system.

2.6.2

Microcontroller basics 29

Odd
Start Data Pal:lt}"
Bit LSB . . MSE Bt ‘
+12V | 0 0 o 0 0 0 Bﬁp
Idle 1 1 1 1 Idle State
-12V
State 'ﬁ/—J
ASCII for 'F"
Figure2.13
Asynchronous character

Asynchronous communication is a serial communications system where the amount of
time between the characters is not defined. One or many characters can be sent at atime.
Because it is not known how many characters are going to be sent, each character must be
able to stand-alone within the communication system. To make this happen a start and
stop bit is added to each character. The start bit is always a 0 and the stop bit is aways a
1. Most asynchronous systems use the 1 as an idle state on the communication line.
Therefore the start bit (0) differentiates between idle (1) and the character. The stop bit
(2) is placed at the end of the character to provide some time between characters. (This
was more important on teletypes.) Another part of asynchronous communications is that
often the start bit is seen as a voltage level and not as a rising edge. This helps to make
asynchronous systems less susceptible to noise, but having said that it should be noted
that asynchronous communication is very susceptible to noise because each character
must synchronize within the first bit. At 115 k this is less then .001 millisecond. Noise
can cause phantom characters that can be misinterpreted by the receiver.

Synchronous packet communications

Synchronous communications is a relatively recent development in communications.
Because synchronous systems usually run very fast bit rates, timing is very important.
Synchronous communication does not have start or stop bits like asynchronous
communications. The synchronous characters are usually packaged with start and stop
characters and sent as a packet. Ethernet for example sends seven bytes of clocking and
then one start byte at the beginning of every packet. At the end of the packet four cyclic
redundancy characters are sent as stop characters. Synchronous systems use rising or low
going edge triggering to synchronize the receiver. As mentioned above edge triggering is
more susceptible to noise but the extra clocking negates this problem. In fact synchronous
systems are overall less susceptible to noise and usually have a better data to overhead
ratio then asynchronous systems. Overheads are non-data bytes or extra characters sent
with the packet. These characters can be clock bytes, addressing characters or error
checking information.

Preamble| Start Destination Source Length Data CRC
Delimiter | Address Address

7 Bytes 1Byte |2o0r6Bytes|2or6Bytes| 2Bytes (64 - 1500 Bytes| 4 Bytes

Figure2.14
Synchronous Ethernet packet

30 Practical Embedded Controllers

2.6.3 Specifying a system —asynchronous vs synchronous

When specifying a system it is often a choice between asynchronous and synchronous.
Typically the following physical systems are:

o RS-232 Asynchronous

o RS-422 Asynchronous or synchronous
¢ RS-485 Asynchronous or synchronous
e USB Synchronous

o Firewire Synchronous

o Ethernet Synchronous

Asynchronous systems are used when speed is not an issue (Max 115 kbps) and the
distances are short (50 meters). Synchronous systems are used when speed and distance
are important. Synchronous systems can run at tens of gigabytes speeds and using fiber
optic kilometers of distance.

2.7 Power systems

From the early days of microcontroller systems they have had the reputation as
unreliable. And as with anything, once it is labeled unreliable the reputation sticks. It will
take many years, if not decades before microcontrollers will be totally trusted (some say
never).

The reasons for this apprehension are:

¢ People distrust things when they don’t know how they work
e Programming mistake

e Hardware failure

e Unknown failure

UPS (09) 307 6093

® VA

CURRENT

UPS Wholesalers of Australia Pry. Lid,
ACM 009 462 462

MAX. TOTAL LOAD 3 AMPS
WARRANTY V0SS IF LID MEMOVED

Figure 2.15
Un-interruptible power supply

2.7.1

Microcontroller basics 31

The first three are bad enough but at least we know what is causing the problem, but the
last one ‘unknown failure’ is not acceptable. These unknown failures are very common in
microcontroller systems. The technician or engineer shows up on site and finds that the
equipment has either failed or locked up. The troubleshooter turns the power off and then
back on and the equipment starts to work again. The logbook shows ‘unknown failure'.
The cause of the lockup is not exactly known but the troubleshooter has afair idea. There
may have been a high voltage spike or power failure that has caused the microcontroller
to go off into never-never land. This is a place in the microcontroller's memory from
where it cannot return. Resetting the equipment is the only solution to this problem.

Hardware vs software

There are two types of resets on microcontrollers, hardware and software. The hardware
reset is a physical line that is toggled usually from high to low by way of a switch. This
resets the microcontroller completely from the beginning. The advantage of the hardware
reset is that it resets all the chips in the device and clears everything. The disadvantage is
that the hardware reset must be done manually. There is a semi-hard reset that can be
done by hardware chips on the microcontroller. This semi-hardware reset is not a true
hardware reset because it does not turn the power to the chip off and on. The semi-
hardware reset toggles the hardware-reset line going into the microcontroller.

PUS A?? 77 | PAT7
PBO A8 42 | pRO
PB1 A9 41 | pB1
O PB2 A10 40 | pB2
Reset PB3 Al 39_{ PB3
PB4 A12 38 | pRa4
— PB5 A13 37 | PB5
vee Se0ss PB6 Al4 36 | pRo
2 PB7 A15 35 | pR7
VDD |3
ouT o PU9 | RES 17 | RES
1| vss PU1 / XIRQ 18 | XRG
J__ PU11 /IRQ 19 | R
— J1-
= e PU10 MODA 3| MODA
°o_o PU13 MODB 2 MODB
J2- PUI2 /A5 4 |75
= R/U 6 _|R/IT
E 5 E

Figure2.16
Reset circuit onan HC11

The software reset stops the program and moves the program pointer to the address
defined by the manufacturer as the beginning of the program. Thisis usualy $FFFE. The
address located in the data at $FFFE and $FFFF is where the program pointer would jump
to. If the bytes $CO and $00 were in $FFFE and $FFFF respectively, then the program on
reset would jump to address $C000.

32 Practical Embedded Controllers

2.7.2

Hardware reset design

Hardware reset design can take four forms and al four can be used in the same system:

o Power on/off switch

o Reset momentary switch

o Power failure and brownout protection (hardware or software)
o External watchdog timer

The power on/off system is self-explanatory, but is the best way of resetting the
equipment. Thisis because it clears and resets all of the chips. The problem with thistype
of reset is that the troubleshooter may have to travel long distances to arrive at the site,
only to turn the power off and back on again. This can cost the company thousands of
dollars per trip. The momentary reset switch, although not as good a reset as using the
power switch is often sufficient to reset the equipment. It has the advantage that the
power stays stable during the reset. It has the disadvantage that only the microcontroller is
reset and the other chipsin the system are left in their existing state. The memory may be
corrupted and the reset switch may not clear the memory like the power on/off hardware
reset.

Figure2.17
Momentary reset switch on an EVM

When areset is performed it is necessary for the programmer to check the memory to
see if it is has been corrupted. The programmer develops a memory-checking program
that makes sure that the memory is error free. Using an error correction system like
arithmetic checksum or cyclic redundancy (CRC) on the memory from time to time the
program can verify that the memory is accurate. It is possible to verify the memory
during a brownout or as the power is being turned off. When the microcontroller notices
that the power is dropping it jumps to a memory check program and runs a checksum or
CRC on the memory. It then places the result in a memory location before the power is
completely off. When the power is restored the program rechecks the memory and
compares the checksum or CRC. If they are exactly the same then the memory is left as
is. If they are different and therefore assumed corrupted, the program will erase the
memory.

Microcontroller basics 33

2.7.3 COP watchdog (Woof)

When a spike of high voltage or static is introduced into a microcontroller, the program
counter can become garbled. The program counter points to the next instruction in the
program. If the program counter becomes mixed up, the program may start to do strange
things. The problem with microcontrollers is that it is impossible to stop this from
happening.

But having said that, there are things that can be done to reduce the possibility of this
become a problem:

¢ Reduce the possibility of endlessloops in the program
¢ Put no operation instructions (NOP) in any memory that is not being used
¢ Put jumps to the beginning of the program every so often in unused memory

e Use the on board computer operating properly (COP) function on board the
microcontroller

e Use external hardware watchdog circuits to reset the microcontroller

¢ Design circuits with high voltage and spike protection on all external wires
e Design in hardware brownout and power failure protection

¢ Use un-interruptible power systems for the microcontroller

NOP

NOP

Figure2.18
Flow chart for empty memory locations

34 Practical Embedded Controllers

2.7.4

2.8

Power failure and brownout protection

If the input power to the microcontroller becomes unstable the RAM, EEPROM or
program counter within the microcontroller could be corrupted. To reduce the possibility
of this problem manufacturers of microcontrollers usually suggest the use of externa
hardware circuitry that resets the chip in a controlled manner. It can be seen in figure 2.16
that a power control chip feeds the microcontroller-reset circuitry. Whenever the voltage
drops below legal limits the microcontroller is reset. The problem with these circuits is
that if the power is going up and down quickly, the microcontroller will continue to reset.
Battery backed RAM and even battery-powered microcontrollers are becoming more and
more popular. In thisway if the power fluctuates the voltage on the chips remains stable.
Some companies are developing completely battery-powered equipment as a way of
reducing spiking. Thisis possible because of the low power drain of recent chips. A small
battery can run some devices for up to 5 or even 10 years without changing the batteries.

Crystals and oscillator

Crystals are used to stabilize the clocking in microcontroller oscillators. The selection of
the frequency of the crystal determines the speed of the microcontroller and also the baud
rate of the communications. The crystal doesn’t determine the exact baud rate, but rather
a range of baud rates. Placement of the crystal and its support parts is important in PCB
design to reduce noise. Crystals are extremely noisy devices and when the lines are long
from the crystal to the microcontroller, noise can be transmitted to other chips. To reduce
noise on a crystal it is important to place the crystal as close to the microcontroller as
possible. It adso helps to put a one-dimensional Faraday shield around the crystal if
possible.

CRYSTAL

M&SHC 11

Figure2.19
Layout of a crystal as per the Motorola 68HC11 reference manual

28.1

2.8.2

Microcontroller basics 35

Values vs baud rate

Below are some examples of prescale baud rates and baud rate selection. Prescaling the
baud rate determines the highest Baud rate that can be achieved by setting two bits in the
baud setup register $102B. Bits 4 and 5 in the $102B register define the prescale and bits
0, 1 and 2 in the same register define the actual baud rate. Which prescale is used is a
function of the frequency of the crystal.

Crystal Frequency
SCP1|SCP0|SCR2|SCR1|SCRO| 223Hz | 8MHz 4.9152 MHz 4MHz | 3.6864 MH:
Baud Rates

0 0 0 0 0 131.072K Baud 125.00K Baud 76.80K Buad 62.50K Baud 57.60KBaud
0 0 0 0 1 65.536K Baud 62.50K Baud 38.40K Baud 31.25K Baud 28.80KBaud
0 0 0 1 0 32.768K Baud 31.25K Baud 19.20K Baud 15.625K Baud 14.40KBaud
0 0 0 1 1 16.384K Baud | 15.625K Baud 9600 Baud 7812.5 Baud 7200 IBaud
0 0 1,0 0 8192 Baud 7812.5 Baud 4800 Baud 3906 Baud 3600 IBaud
0 0 1 0 1 4096 Baud 3906 Baud 2400 Baud 1953 Baud 1800 IBaud
0 0 1 1 0 2048 Baud 1953 Baud 1200 Baud 977 Baud 900 |Baud
0 0 1 1 1 1024 Baud 977 Baud 600 Baud 488 Baud 450 Baud
0 1 0 0 0 43.691K Baud | 41.666K Baud 25.60K Baud 20.833K Baud 19.20KBaud
0 1 0 0 1 21.845K Baud | 20.833K Baud 12.80K Baud 10.417K Baud 9600 Baud
0 1 0 1 0 10.923K Baud | 10.417K Baud 6400 Baud 5208 Baud 4800 Baud
0 1 0 1 1 5461 Baud 5208 Baud 3200 Baud 2604 Baud 2400 Baud
0 1 1 0 0 2731 Baud 2604 Baud 1600 Baud 1302 Baud 1200 Baud
0 1 1 0 1 1365 Baud 1302 Baud 800 Baud 651 Baud 600 Baud
0 1 1 1 0 683 Baud 651 Baud 400 Baud 326 Baud 300 Baud
0 1 1 1 1 341 Baud 326 Baud 200 Baud 163 Baud 150 Baud
1 0 0 0 0 32.768K Baud | 31.250K Baud 19.20K Baud 15.625K Baud 14.40K Baud
1 0 0 0 1 16.384K Baud | 15.625K Baud 9600 Baud 7812.5 Baud 7200 Baud
1 0 0 1 0 8192 Baud 7812.5 Baud 4800 Baud 3906 Baud 3600 Baud
1 0 0 1 1 4096 Baud 3906 Baud 2400 Baud 1953 Baud 1800 Baud
1 0 1 0 0 2048 Baud 1953 Baud 1200 Baud 977 Baud 900 Baud
1 0 1 0 1 1024 Baud 977 Baud 600 Baud 488 Baud 450 Baud
1 0 1 1 0 512 Baud 488 Baud 300 Baud 244 Baud 225 Baud
1 0 1 1 1 256 Baud 244 Baud 150 Baud 122 Baud 112.5 Baud
1 1 0 0 0 10.082K Baud | 9600 (+0.16%) 5908 Baud 4800 (+0.16%) 4431 Baud
1 1 0 0 1 5041 Baud 4800 Baud 2954 Baud 2400 Baud 2215 Baud
1 1 0 1 0 2521 Baud 2400 Baud 1477 Baud 1200 Baud 1108 Baud
1 1 0 1 1 1260 Baud 1200 Baud 738 Baud 600 Baud 554 Baud
1 1 1 0 0 630 Baud 600 Baud 369 Baud 300 Baud 277 Baud
1 1 1 0 1 315 Baud 300 Baud 185 Baud 150 Baud 138 Baud
1 1 1 1 0 158 Baud 156 Baud 92 Baud 75 Baud 69 Baud
1 1 1 1 1 79 Baud 75 Baud 46 Baud 38 Baud 35 Baud
2.1 MHz 2 MHz 1.2288 MHz 1 MHz 921.6 kHz

Bus Frequency (E clock)

Table2.4
Baud rates (as per the Motorola 68HC11 reference manual)

EMC and PCB crystal clock design

There are very specific design rules laid out by the manufacturer. It isimportant to check
the manufacturer’ s microcontroller reference manual for the suggested way to connect the
crystal on the PCB. As far as the HC11 is concerned the following drawings show the
suggested method for connecting the crystal. Notice that the high frequency connection
has the resistor closer to the crystal. There are two resistors for the low frequency crystal.

36 Practical Embedded Controllers

STOP

MG8HC 11

EXTAL XTAL

- C1 —C2

Figure 2.20
Low frequency crystal connection

STOP

M68HC 11

EXTAL XTAL

- C1 - C2

Figure2.21
High frequency crystal connection

2.9

Microcontroller basics 37

Figure2.22
Crystal top view

Figure2.23
Crystal bottom view

Conclusion

This chapter gives an introduction to microcontrollers. Although the reader may never
program or design a microcontroller system it is still important to understand the basics of
microcontrollers. The starting place for a good awareness of microcontroller systems is
with numbers. The microcontroller is, after al in its basic form, a counting device. Even
the basic binary ones and zeros have become part of our globa culture. Once the

38 Practical Embedded Controllers

numbering systems of microcontrollers are understood then it is a quick jump to ASCII
code. Thisis the code used by most communications systems to transfer data to and from
the microcontroller. ASCII is an English language code that converts hex bytes into
letters and numbers that the user or designer can understand. Besides communication it is
also used for LCD displays.

The AND, OR, EOR and NOT gates are building blocks for comparing or changing bits
in aregister. For example the AND gate can be used to mask out bits in aregister. These
gates can be used in hardware or in software programs to control outputs as defined by
the inputs. The result of the gate is often place in an accumulator in the microcontroller.
The accumulators are temporary 8-bit storage places in the microcontroller where data is
placed before being used by the program. The 8-bit A and B accumulators are combined
to form the 16-bit D accumulator. The instructions LDAA or LDAB are used to place
data in these accumulators. The STAA and STAB instructions are often used to store the
data in memory locations pointed to by the 16 bit-X and Y registers. The 16-bit X and Y
registers can hold any data that is needed by the program, but their most common use is
pointing to RAM, EEPROM and EPROM memory locations in the microcontroller.
These registers are often stored in afirst in last out memory location called the stack.

One of the most powerful functions of the microcontroller isits ability to communicate
with the outside world. Some microcontrollers have on board communication ports. The
HC11 has both a synchronous and asynchronous communication ports. The asynchronous
port is often used for the RS-232 or RS-485 voltage standard. Asynchronous has been the
most common type of communication in the past, but it is quickly being replaced by
synchronous packet systems.

One of the most common problems with microcontrollersis spiking due to high voltage
or static. This causes skepticism in the reliability of microcontroller systems. It is
therefore very important for the microcontroller designer to do everything possible to
make the design as stable as possible and with a high resistance to spiking. Watchdog
systems, good software design and reset circuits are a few of the ways to make the
microcontroller a more stable platform.

3

3.1

Microcontroller programming

Objectives

When you have completed this chapter you will be able to:

¢ Describe the basic programming structures of microcontrollers

e Explain flow charts and how they are used in programming microcontrollers

¢ Describe how to load a program into an EVM

¢ Describe the different modes of addressing in assembly language

e Describe how datais loaded and stored in the memory of the microcontroller

e Explain how arithmetic functions are done within the program of
amicrocontroller

o Explain how index registers point to addresses within the program

o Describe how branches and jumps are used to move around the program

Introduction to programming the microcontroller

This book is not intended to be a manual on programming, but when working with
microcontrollers it is helpful to understand the basics of how the microcontroller works
from a programming point of view. This chapter is concerned with a general overview of
programming methods, functions and specific assembly language instructions. At the end
of this chapter it briefly mentions BASIC and C++ high level programming languages.
But it is not within the scope of this chapter to get into any detail on BASIC, C++ or other
high level programming language.

Programming is the method of telling the microcontroller how to handle inputs,
manipulate data and control outputs. Programmers write the instructions or code that
specifically tells the microcontroller how to function. Even before computers were
invented people were wondering if it would be possible to write a program that could
program itself. This day is getting closer and closer. With the advent of language
recognition and high level languages it is possibly only a matter of a decade or so before
this happens. But for the moment we still need to rely on programmers to write the

40 Practical Embedded Controllers

programs. Most programmers find out very early on in their work that the microcontroller
is a very stupid device. It only does what you tell it to do and even then it can get
confused. This is because it does what we tell it to do and not what we want it to do.
Often a straightforward subroutine can cause hours if not days of trouble. | have written a
bit of code and for no apparent reason it does not work. | then duplicated the code exactly
and verify that it is the same and now it works for some reason.

Four of the most common problems in software design are:

o Lack of planning

e The user doesn’t know what he/she wants or what can be done
e The programmer doesn't follow the specifications of the user
o Lack of planning

Lack of planning is mentioned twice because it is the most common problem.

Figure3.1
Lack of planning

Once the planning is done and the code written, the program is tested. This testing is
done on a microcontroller evaluation module. The program is loaded into the module and
the program is run. If it works the way the programmer wants, the programmer continues
to write more code. The programmer will do this over and over until the program is
finished. Often programming is compared with building a house. The builder puts up a
board, test it to seeif it fitsand if it does goes on to the next board. And just like a house
the builder should start with extensive planning. Only the foolish builder would assume
what the user wants and starts building without having detailed plans. As they say,
planning and preparation are everything. A lot of programmers believe it or not, just start
coding and then wonder why the project gets bogged down.

The traditional method of program planning is done using the flow chart. One of the
differences between the university-trained programmer and the self-trained programmer
is that the universities spend time (although not enough in my opinion) teaching planning
and structure. There are good and cheap programs available to help the programmer
create flow charts. Often when | am having a problem coding a subroutine | find it helps

3.2

Microcontroller programming 41

to get out the flow chart program and do a detailed analysis of the subroutine. This has
never failed to help me find the solution.

Programming structure and specifications

When starting a programming project the programmer will often sit down with the user
and work out the specific functions of the project. This sounds easy but it is often
difficult.

There are three problems that can cause friction between the user and the programmer.

o Lack of knowledge of embedded systems by the user
¢ The language barrier between programmer and user
e The artistic nature of programming

Very often the user does not know what the electronic device or program is capable of
doing. Once the user gets a taste of what the program and device can do, they often want
more and more functions. The user may start off with a simple project, thinking it is
going to be hard, and the programmer will tell the user that it is going be easy. The user
will then decide to add more features. This leads to the never-ending project.

Programming can be compared to painting a picture. The user starts with the idea of a
simple portrait and soon the painting is of the whole family. To reduce this problem it is
best to have a third person or group that can interface between the user and the
programmer. This person or group can collate the specifications as defined by the user
and discusses them with the programmer. The end result should be that the supplier gives
the user what is specified, no more or less.

] Dday To Finish Other
Meet With TheUsa's Rrojects Code The Frogam
Define Specification Do How Charts — Doesit Meet m

Specificaions?

Target Patentia
Prablenrs

Submit Find Rroduct

U

Doesit M eet
Specificaions?

Figure3.2
Planning the project

The programmers often live in a world of their own. The language they speak is
programming language. What is simple for the programmer is often seen as hard to do by

42 Practical Embedded Controllers

3.2.1

3.2.2

the user and what is hard for the programmer to do is often seen as easy by the user. One
of the most difficult questions to answer for the programmer is how long is it going to
take to write the program. Adding more programmers to a problem or program doesn’t
mean it will get done quicker. Adding programmers to a project usually meansit is going
to take longer. When the programmer starts using words like, subroutine, non-maskable
interrupts and vectors most users give up. The interface person or group is useful, when it
is necessary to explain to the user what the programmer is saying.

The nature of programming is such that every programmer approaches a program
differently. There is no correct way to write a program. One programmer may take two
weeks to write a 50-line subroutine while another may take one week to write a 200-line
subroutine that does exactly the same thing. Which is better is hard to say. On the surface
the 200-line subroutine looks better because it is cheaper, but the short program might fit
in the microcontroller’'s RAM whereas the 200 line would not. This means more
hardware, which is costly in the long run. The artistic nature of programming should be
counter balanced by good planning. The interface manager or group should know enough
about programming to help the programmer plan the project.

Programming structures

After the specifications and preliminary planning are complete, the next step isto develop
the flow charts. Strangely some electronic designers will spend days or weeks designing
the schematic for a circuit, but when it comes to writing a program the programmer will
often skip the flow-charting step. In its simplest form, a program is a collection of
subroutines. Each of these subroutines can be written as a flow chart. The subroutines can
often be divided into smaller subroutines. Before writing any code, the program should be
developed using flow charts.
There are three basic parts to any program:

e Inputs
e Manipulation of data
e Outputs
| ——
Inpus Manipulation of Deta Qutpus
Figure 3.3

Three basic parts of a program

Inputs

The inputs can be digital inputs or analog inputs. Digital inputs could take the form of
keypad switches, magnetic switches, toggle switches or even motion sensors. Analog
inputs could include DC voltage, mains current, or resistance measurement. These inputs
must be dealt with in some manner. What kind of inputs and how often they are going to
be read, and the priority must be specified during the planning phase. The inputs can be
categorized in the following way...

3.2.3

Microcontroller programming 43

High priority Read often and may need to interrupt the microcontroller
Fast acting Read quickly (asin samples per second)
Electronic switches Need power either mains or battery

Mechanical switches Need debounce and are normally open or closed
Analog inputs Must be sampled at some rate, level and resolution

. | g
Bololie L_D_J"’alfjr_l'l"_i_l!‘l.
iR in et Ro Rl RNl

Figure3.4
EVM inputs and outputs

Manipulation of data

The manipulation of the data can take on many forms. It can be a menu system defined by
the keypad input or it could be the timing calculation of multiple switch closures. The
timing of events is so common that many microcontrollers, including the HC11 have
timers on board. Analog inputs are sampled and the values used to develop responses.
These analog inputs are also used in conjunction with digital inputs to formulate outputs.

39DegessC
Is The Temperature
Greater
or
Qurrent Temperature E qu al

To the Set Point

Figure3.5
Manipulation of the data

TurntheFan On

44 Practical Embedded Controllers

3.24

3.24

Outputs

The outputs from microcontrollers are usually digital outputs. These in turn drive
electromagnetic or solid state relays. The relays are then used to turn on motors, lights or
any electrical device. The output from the microcontroller isa 1 or a 0 in the form of a
voltage. Either one of these states can indicate an ‘on’ situation. The binary 1 is usually
represented by +5 volts, whereas a binary 0 is 0 volts. In most systems a 0 indicates that
the device is on. This is because TTL (transistor-transistor logic) uses less power when
supplying O volts as an output. A typical circuit would supply a constant + 5 volt to a
device that is to be controlled. Then when the device is to be turned on, the program tells
the output driver to supply 0 voltsto the device. The device would then turn on.

+5
Current
Limiting —
Resister 1K

Microcontroller

Figure 3.6
Digital outputs

Once the inputs, manipulation of data and outputs have been specified, the programmer
can then go on to the next part of the preparation phase which is flow charting the
program.

Flow charts

Flow charts are used to give the programmer an easy way of seeing the overall program
while also seeing the more minute detail of every subroutine. A program is a group of
major subroutines. Each of these subroutines is then made up of more detailed
subroutines. Once the specifications for the inputs, data manipulation and outputs are
done the overall program subroutines are charted. Then each major subroutine is broken
down into small subroutines and these are charted. These sub-subroutines should be
charted completely, down to the last branch.

Microcontroller programming 45

Check Ardlog I nput

Is Input Grester

Sa Pant Then S¢ Pant

Check Agan

— >

Figure 3.7
Flow chart example

NOTE: One mgjor mistake programmers make is that they often use the data from one
subroutine directly into another. An example of this could be... The result of one
subroutine could be placed in the index register X. Then another subroutine could use the
value in the index register X as a variable. It is better to take the result and placeit in a
memory location, then when it is needed it can be retrieved from there. All subroutines
should be completely independent and stand-alone. No subroutine should directly depend
on the output of another.

The overall structure of aprogram is usually donein this manner:

Constants
Initialization
Subroutines
Strings

46 Practical Embedded Controllers

Congants

Indisation
Flow

Subroutines

Strings

Figure 3.8
Program flow

The constants are a list of names of memory locations, register locations and
subroutines. This could include RAM, EEPROM and microcontroller registers. An
example of this could be...

ORG $C000 Starting Address Of Program in External RAM
LDS #50 Initialize System Stack in Internal RAM
kkhkkkhkkkhkkkhkkkhhkkhkhkkhkhkkhkhkhkhkhkhkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhhkkhkkhkkhkkhhkhhkhhkhkhkkhkkhkkhkkhkkkk,kk**%
KEY_B EQU $1000 Key Press (Port A)

PACTL EQU $26 Pulse Accumulators Control Register Offset
TCTL1 EQU $20 Timer Control Register

PORTD EQU $1008 Port D Address

DDRD EQU $1009 Data Direction Control Register

SPCR EQU $1028 SPI Control Register

BAUDR B EQU $102B Baud Rate Setup Register

SCCR1 EQU $102C SCI Control Register 1

In the previous example the address location of $1000 is named KEY_B and the
program can at any time go to address $1000 by invoking the name KEY _B.

Next is the program could initialize the inputs and outputs. Next is an example of
communication port initialization.

COMSET LDX #BAUDR_B Point To Baud Rate Setup Register
LDAA #$30 Load For 9600 Bps
STAA $00,X Store $30 in Setup Register
LDX #SCCR1 Points To SCCR Comms Setup
Register 1
LDAA #3$08 Load 08 in Accumulator A
STAA $00,X Store 08 In Comms Setup Register 1
LDX #SCCR2 Point To TX Set Register 2
LDAA #$2C Load 2C in Accumulator A
STA $00,X Store It In Comms Setup Register 2

RTS Return From Subroutine

Microcontroller programming 47

]
Point to Baud Rete Register Load A with $08
Load A with $30 For 9600 AUt in SCCR1 Pu in SCCR 2

U il]

Point to SCCR2 Comims Setup T]
Register

U J

Pointto SCCR1L Comms Setup
Register

I e

Put in Baud Rate Register {]

Load A with $2C

Figure 3.9
Communication initialization flow chart

Once the inputs and outputs are initialized the programmer will then write the code for
the subroutines. Below is an example of adisplay subroutine.

kAhkkhkkhkkhkhkkhkkhkkhkhkhkkhkhhkkhhkhhkhkhkhhkhkhkhhhkhhkhhhkhhkhhhkhhrhhkhhhhhkhhrhhkhhrdxkhkhrxx*x

* Display Subroutine
khkkkkkkkhkkkhkkhkkhkkhkkhkkhkkhhkkhhkkhhkhhkhhkhhkhhkhhkhkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkx*x
DISPLAY PSHB Push Accumulator B Onto The Stack
LDX #STRING1 ‘ BAUD ‘
LDAB #$28 Load B With 40 Count
LOOP JSR LCDBUSY Check If The LCD is Busy
JSR DELAY LCD Deay (Slowsthe Change Down)
LDAA $00,X Loads First Byte From Mess
STAA $8001 Display Character On The LCD
INX Increment Character
DECB Decrement B (40 Count)
BNE LOOP If Not 40 Characters Then Loop
PULB Pull Accumulator B From the Stack

RTS Return To Subroutine

48 Practical Embedded Controllers

3.2.6

Push B on the Stack Delay 1 Decrement B Count
Point to the "BAUD" Load String Ch
String oad Stng Characier Count Done?
Load B with 40 Store Character in the
Character Count LCD Pull B from Stack
Ishe ECD I Increment Character RTS
Busy?
—_—

Figure 3.10
Display flow chart

The last section of the program is the string storage area. This is where the strings are
held. When the program wants to send a standard string, it goes down to this area and
picks up the string. It does this by pointing to the name of the string and then
incrementing the characters one at atime. An example of thisis...

khkkkhkhkkhkhkhkhkkhkhkhhhhhkhkhhhhkhhhhhkhhhhhkhhhhhkhhhhdhkhhhhdhhhhhdhhhhdhdhhdkddhxxdx%

* Strings To Be Sent
khkkkhkkkhkkkhkhkkhhkkhhkkhkhkkhkhkhhkhkhkhhkhkhkhkhkhhhhhhhhhhhkhhkkhhkhhkhhkhhkhhkhhkhdhkhkdhkhkdhhdddxkdxk,x*x%x
STRING1 FCC BAUD ‘

STRING2 FCC DISPLAY ‘

STRING3 FCC LIVELIST HERE ‘

STRING4 FCC <<-SN ‘

STRING5 FCC <<-MODEL ‘

STRING6 FCC NEXT ADDRESS ‘

STRING7 FCC <<YES NO>> ‘

In this example each of the strings are enclosed between * ‘. Each string, including
spaces, is 16 characters long. This is because the display only can show 16 charactersin
one line at atime. Notice that the display subroutine has a count of 40. Thisis because the
LCD display RAM holds 40 characters for each line, but only displays the first 16 of
them. The programmer may then want to load the second line with another forty
characters.

Loading a program into an evaluation module (EVM)

There are many different types and makes of microcontroller evaluation modules,
although the purpose is basically the same. The evaluation modules are used to test the

3.2.7

3.3

Microcontroller programming 49

program on a real microcontroller. Often an EPROM with a BUFFALO (c) program is
used to help in talking to the microcontroller. This BUFFALO program has data
communications and /O functions that let the programmer easily access the
microcontroller.

=
=
=
=
=

Figure3.11
EVM board

Stetting up the EVM

o Verify that the display and keyboard are installed correctly
¢ Plug in the power supply to the board

¢ Plug in the RS-232 cable from the computer

o Apply power

o Verify that the power LED illuminates

¢ Run the ASM11 program

e Click on the DOS icon to bring up ProComm

e Push the RESET button on the EVM

¢ Notice that the BUFFALO displays aline on the screen
¢ Press Enter on the computer keyboard

e Type MD 0000 (thisis atest)

e The EVM will send the data to the computer screen

e Type LOAD T then enter

¢ Pressthe Page Up key and then the 7 key

e Type ASM11 program.asm then enter

¢ When the program has been |oaded type G C000

e The program should now run

Addressing modes

Addressing modes often confuse the new programmer. To this end the following section
will endeavor to make addressing modes as clear as possible. There are six different ways
the CPU in the microcontroller can handle an address. It is important at this point to
remember how the microcontroller gets information. When the CPU wants some data it

50 Practical Embedded Controllers

3.4

places the address where that data is located on the address bus. In the HC11 thisis a 16-
bit address. A typical address could be 1101 0000 0000 0010, that is $D002. Once this
address is placed on the address bus, the device that is located at the address $1002 places
the data in that address (such as $0F) on the 8-bit data bus. The CPU then reads the data
bus and puts the data wherever the instruction says. An example of this could be...

$D002 || ADDRESS BUS > [¥C000- DFFO
CPU RAM

ACCLMULATOR DATA BUS $OF

Figure 3.12
Loading data from an address in RAM

LDAA $D002
Thisloads the datain the RAM at address $D002 into Accumulator A
There are six ways the CPU can handle the addressing...
Immediate LDAA #MESSAGE1L
Loads the 16 bit address defined at Messagel following the instruction LDAA
Extended LDAA $D002
L oads the 16-bit address following the instruction LDAA as per Figure 3.12.
Direct LDAA $02
Loads the low byte of the 16-bit address that is located at $00xx. All addresses here start
with $00.
Indexed LDAA $02,X
L oads the address relative to the index register. The above example shows an address of
X plus 2. If X = $1004 then the address would be $1006 and $1007 (16-bit address)
Inherent INCA
Load the address that is inherent to that instruction. Some other instructions that use
inherent addressing are INCB, INX and INY .
Relative RTS
Loads the address that is relative to that specific instruction.

Load, stores and transfers

Instructions like LDAA, LDAB, STAA, STAB, PSHX, PSHY, TAB, TAP and TPA,
PSHA and PULA are considered load, store and transfer instructions. These instructions
load data from somewhere, store data somewhere or transfer data somewhere in the

3.5

Microcontroller programming 51

microcontroller. Usualy the dataisin the form of 8-bit data but it can be 16-bit such asin
the instruction PSHX. An example of this would be a microcontroller pushing an address
(16 bits) pointed to by the X register on to the stack. The address would then be pulled
from the stack later and used somewhere else in the program. The transfer instructions
transfer the data (8-bit) from one accumulator to ancther. The instruction TAB transfers
the data in accumulator A to accumulator B. The data in accumulator B is lost but the
datain accumulator A doesn’t change.

Microcontroller Microcontroller
$37 F $37 37
ACQJM;JLATOR ACO.NI;LATOR ACO_NI'L&JLATOR - ACQJM;JLATOR
I

Figure 3.13
Transferring accumulator A to accumulator B

Arithmetic operations

The arithmetic functions are used to do mathematics within the microcontroller. This
mathematics is usually done in either binary coded decimal or hex. It is not very easy to
add, subtract, multiply or divide in ASCII. Adding $37 (7) and $35 (5) just doesn’t work.
So how would we add two ASCII characters?

To add them, they first need to be converted to hex by subtracting $30 from both
characters then adding the $07 and 05. The sum would then be $0C hex. Converting the
result back to ASCII would be more difficult. Since the sum of two characters is never
higher then 18 decimal ($39 + $39) it is easy to subtract $0A (10 in decimal) from $0C
and then convert the result back into ASCIl by adding $30 to the result. A program
example of thiswould be...

ADD LDAA #$37 Loads Accumulator A with $37 (7)
LDAB #$35 Loads Accumulator B with $37 (7)
SUBA #$30 Subtract $30 from $37 ($07)
SUBB #$30 Subtract $30 from $35 ($05)
ABA AddBtoA ($0C)
TAB TransfersA to B
CMPB #$09 Check if B higher than 9 decimal
BLS DONE If 9 or lower then go to DONE
SUBB #$0A IF B is 10 or higher subtract 10
decimal
LDAA #$31 Loads Accumulator A with $31 (1)
ADDB #$30 Add $30to B
RTS Return to Subroutine
DONE LDAA #3$30 Loads Accumulator with $30 (0)

ADDB #330 Add $30to B

52 Practical Embedded Controllers

RTS Return to Subroutine
—| A B
Load A With First | a7 || $35 | LDANB
ASCI Number Transfe Ato B
rl . Done ,_U_\ ,J_\
Load B With Next Bisoor No ‘ $07 $05 | sueaB
ASCII Number Higher s Load A with $30
y! Yes [l %0C $05 ABA
Convert ATo Hex SQubtract 10 from Add $30to B U U
B
H | $0C || $0C | TAB

U

Convert Bro Hex
rl Load A with $31
rl IsB>09
AddAtoB

Add 8300 B Yes
il | sc || s |ses
RTS
. LDAA
3 832 Loan
| Reitisizaxcl | grs

Figure3.14
Flow chart to add two numbers

This is by no means the only, or even the best way of adding two ASCII numbers.
Some of the other instructions used in arithmetic functions are...

ABA, ABX and ABY
ADDA, ADDB and ADDD
CMPA, CMPB and CPD
DECA, DECB and DEC
INCA, INCB and INC
SUBA, SUBB and SUBD
TSTA, TSTB and TST

3.6 Logical operations

The logical functions used in programming are used to check if certain bits are present
after an operation. If the programmer wanted to check the condition of a certain digital
input the bit that corresponds to that digital input would be checked. There are many
ways of doing this and the following exampleis just one.

PORTA EQU $1000 Define port A
khkhkkkkhkhkhkhkhhkhkhkhhkhkhkhkhhkhhhhkhkhhkhhkhkhhdhkhkhhkdhhkhkhdhkhkhkdhkhkhkkkhkhkhkkdk,kk*xk)%,*k*%
LDX PORTA Point to Port A
CHECK LDAA $00,X Load A with bitsin Port A
ANDA #$01 Mask out BIT O
CMPA #3$00 Ishit0a0
BNE CHECK If bit is 0 then go to CHECK

RTS If not Return to program

3.7

Microcontroller programming 53

DdinePort A as
$1000

Point to Pat A
wih X

y

Load A with what
isin Pot A

AND it with $01 {

IshitOa
Zero?

RTS

Figure3.15
Logical AND flow chart

In the above example the highest 7 bits are AND with 0. This means the output of this
operation will always be 0000 000X with X being the state of bit O of Port A. The original
contents of accumulator A are replaced with the new value. Again thisis by no means the
only or even the best way of checking the bits of a port.

Some of the instructions used in logical functions are:

e ANDA and ANDB

e BITA and BITB

e COMA, COMB and COM
e EORA and EORB

e ORAA and ORAB

Shifts and rotates

Shifting and rotating bits are useful functions for bit manipulation. It could be used to
sequence bits in a stepper motor or lights. An example of thisfunctionis..

SHIFT LDAA #$01 Load A with 0000 0001
STAA $1004 Store 0000 0001 in Port B
ROLA Rotate the bit left one position
JSR DELAY Jump to Delay

BRA #SHIFT Loop to SHIFT

54 Practical Embedded Controllers

3.8

Load A with
SHIFT | 0000 o001
__ Result
Accumuatar A
_ 0000 0001
SoreAinPort B 0000 0010
0000 0100
H 0000 1000
N/ 0001 0000
Ratate Bits left 0010 0000
0100 0000
] 1000 0000
0000 0001
Loop To Shift Erc
Dday

Figure 3.16
Rotating bits flow chart

If the output of port B went to aline of LEDs then the LEDs would sequence one at a
time. Again thisis by no meansthe only way of rotating one bit of a port.
Some of the instructions used in shift and rotate functions are:

e ASLA, ASLB, ASLD and ASL

e ASRA, ASRB, ASRD and ASR
e LSRA, LSRB, LSRD and LSR

e ROLA, ROLB and ROL

¢ RORA, RORB and ROR

Index registers and the stack

Index registers and the stack are 16-bit registers that often hold pointers for programs. A
pointer is an address that is used or pointed to by the program. If the programmer wishes
to use an address over and over, that address might be placed in an index register (X or
Y). The program could then use that address later in the program. This function is often
used when the address needs to be incremented or decremented as shown in the following
example.

LDX $C000 Loads X with $C000
LDAA #$00 Loads A with $00
INDEX STAA $00,X Stores $00 in $C000
INCA Addsoneto A ($01)
INX Increments the pointer ($C001)

BRA #INDEX Loops and stores the incremented A in X

Microcontroller programming 55

Poirt to $C000
With X

U

Load A With $00

U

StareAinX

U

I ncrement A

U

Increment
Address

U

Loop and Do
Agdn

Figure 3.17

Flow chart showing incrementing the address

Notice that the loop starts after the X register has been initialized and accumulator A
has been loaded. If the label INDEX was placed before the LDX instruction then the
same data would be put in the same address every time. If the INDEX label was placed
before the LDAA instruction then the value $00 would be placed in the incremented
address pointed to by the X register. To increase the value of one address LDX and
LDAA could be reversed and the INDEX label placed in front of the LDX. The
instruction INX would not be needed as shown in figure 3.18.

LDAA #3$00 Loads A with $00
INDEX LDX $1004 Loads X with $1004

STAA $00,X Stores $00 in $C000

INCA Addsoneto A ($01)

BRA #INDEX Loop to Index

56 Practical Embedded Controllers

Load A With $00

Poirt to $1004
With X

SoreA in X

Ircrement A

Loop and Do
Agdn

Figure 3.18
Flow chart showing incrementing the count in one address

In the above example the output of port B would count up in a hexadecimal format
forever. Again thisis by no means the only way of incrementing the value in a port.

The stack is a user-defined RAM location that is used by the program to hold data and
addresses to be used later on in the program. The stack is a first-in/last-out temporary
memory block. The stack is usually specified at the beginning of the program and the
address defined is the bottom of the stack. The stack is often compared to a pile of plates
in a cupboard. The plate on the bottom of the pile is the first plate put in the cupboard.

Often data or an address is placed on the stack to free up the A or B accumulators or the
X or Y registers in a subroutine. The subroutine usually pushes a value on the stack and
then later on pulls the value off the stack. It is possible to use values on the stack by using
an offset instruction. This pulls the value off the stack in the same way one might pull a
plate from the middle of a pile of plates. Some programming books suggest that the
programmer push A, B, X and Y on the stack at the beginning of every subroutine. And
of coursethe A, B, X, and Y registers will need to be pulled from the stack at the end of
every subroutine. This practice is rarely done, asit is a waste of memory and instructions
in the program. It is only necessary if the programmer shares data between subroutines.
Often a program will stop after a few loops because the stack gets full. This happens
because something is being pushed on the stack, but was never pulled off. When the stack
gets full the program stops.

Some of the instructions used in index register and stack functions are:

e ABX and ABY

e CPX and CPY

e DEX, DEY and DES
o INX, INY and INS

e LDX,LDY and LDS

3.9

3.10

Microcontroller programming 57

e PSHX, PSHY and PULX, PULY
e STX, STY and STS

e TSX, TSY and TXS, TYS

e XGDX and XGDY

Condition code register

It is said that the difference between the amateur and professional assembly language
programmer is that the professional programmer pushes the use of the condition code
register to its limits. The 8-bit condition code register is a function of the results of
implementing instructions. Whenever an instruction is executed the condition code
register is usually affected. For example when the instruction CM PA is executed, the bits
in the condition code are changed as defined below.

N Set if the most significant bit of the result of the compareisset (1), itis
cleared otherwise (0).

Z Set if the result of the compare is $00, otherwise it is cleared.

V Set if the result of the compare is a 2's compliment overflow,
otherwise cleared.

C Set if the most significant bit of the result of the compare was a borrow,

otherwise cleared.
The condition code can be somewhat manipulated manually by the programmer using
instructions like:

e CLC, CLI and CLV
e SEC, SEl and SEV
e TAPand TPA

Branches, jumps, interrupts and calls

Branches, jumps, interrupts and calls are used by the programmer to move around within
the program. This is very useful and a very powerful part of coding a program. The
branches and jumps can be divided into two basic types, conditional and unconditional
jumps. Conditional branches and jumps depend on the result of some instruction or
condition of the condition code register. If the results of an instruction are higher, lower,
equal or not equal to the defined value, the instruction branches the program to some
other location. Unconditional branches or jumps are used when it is important to move to
another part of the program, no matter what. The most common unconditional jumps are
the instructions JMP and RTS. These instructions are used to jump to a subroutine and
then return when the subroutine is finished. If the program is written properly, every
subroutine will finish with an RT S instruction. One of the advantages of the RTS over the
BRA instruction is that the RTS addressing mode is relative. This means that the
programmer does not have to keep up with where the subroutine needs to return after a
JMP.
Some of the jump, branch and call instructions are:

e BCC and BCS
 BEQ and BNE

e BHI and BLO

e BMI and BPL

e BVC and BVS

e BRCLR and BRSET

58 Practical Embedded Controllers

3.11

3.11.1

3.11.2

3.12

e BRN, BRA and IMP

¢ JSR, BSRand RTS

e RTI, SWI and WAI

e NOP, STOP and TEST

BASIC and C++

Often the experienced programmer will use the same subroutines over and over and will
even keep alist of subroutines like initiaization, display and print to be used later. Using
basic, Pascal and C++ is similar to having a set of pre-written subroutines. The good part
of using these higher level programs is that it makes the programming faster and easier.
C++ is especialy good because it allows the programmer to write the program using a
high level language and aso manipulate the microcontroller at the bit level. The problem
with using a high level program to program the microcontroller is the large memory that
these languages need and the lack of control that assembly language allows.

BASIC

BASIC takes many forms, from the old GW BASIC to Visual BASIC. BASIC is built
around simple and obvious commands like IF, Then and Goto. If the basic programmer
wants to do something based on something el se then the statement below might be used.

10 If X =31 then goto 50

This says that, if the value of X is 31, then jump to line number 50. Again the
programmer uses a number of basic subroutines to develop the program. Once this has
been done the programmer uses an interpreter such as basicll.arc to convert the basic
program into a machine level program. The machine level program is then loaded into the
microcontroller similar to the way an assembly program is loaded.

Using C++ in embedded programming

One of the situations with assembly languages is that they are not portable. This means
that the assembly program from one family of chips will not work directly on the family
of another. C ++ high level programming language is portable. A C++ program written
for a Motorola chip should be convertible to an AMD chip. Unfortunately the biggest
problem with using C++ is the size of the program. Often a C++ program will be 4to 5
times larger than an assembly language program.

C++ cross compilers are used to convert the C++ program into BIN files. These binary
files are then linked together to make a complete program.

Conclusion

Programming is becoming easier and easier but also very memory hungry. As
microcontrollers become more powerful and have larger amounts of memory on board,
programming will become easier and simpler. For the moment the most efficient way is
using assembly language programming. This requires the programmer to have exhaustive
knowledge of both programming and the hardware sides of the device.

As we have seen, assembly language instructions are very versatile and allow the
programmer to tweak the program in very small ways. Instructions like LDAA and BRA
are easy to understand and use. Often these instructions are paired and compliment each
other. A good example of this is the IMP and RTS instructions. The JMP jumps to a
subroutine and then RTS returns from that subroutine. The results of an instruction can

Microcontroller programming 59

affect the condition code register and conversely the values in the condition code register
affect the results of other instructions.

It is true that most programmers use the higher programming languages of BASIC or
C++ to program microcontrollers. Most programmers find these higher languages easier
and more straightforward. They are also more convertible. This means that if for some
reason the microcontroller chip needs to be changed to another type, the program can be
easily converted to the other chip.

4

4.1

Microcontroller memory

Objectives

When you have completed this chapter you will be able to:

o Describe the different types of memory used in microcontrollers

o Explain the function of RAM and how it is used in microcontrollers
o Explain the memory map of the HC11 microcontroller

o Describe the BUFFALO and its purpose in software devel opment

o Describe vectors, interrupts and pseudo-vectors

o Explain the control registers used in the HC11 microcontroller

e Explain how to store datain an EEPROM

Introduction to memory

There are many types of memory used in microcontrollers, RAM, ROM, EPROM and
EEPROM. Each type of memory has its uses and may be included in the system as
internal or external to the microcontroller. It is not unusual to see internal and external
memory used in a microcontroller at the same time. The memory included in the
microcontroller is often limited and therefore it is often necessary to use both internal and
external memory. Also sometimes the size of the program determines that external
memory must be used. Although assembly language is very compact, subroutines such as
error checking and data base management take up so much room that an externa RAM
chip may be required. EEPROM space is also limited on a microcontroller and therefore
external EEPROM s often used.

4.2

Microcontroller memory 61

Figure4.1
Ram chip with battery attached

The following sections define the different types of memory and when they should be
used. Often different types of memory lend themselves to different uses. This is often
very subjective and up to the programmer and hardware engineer to determine what type
of memory to use and when. As we saw in Chapter 3, assembly instructions are used to
move around within memory locations in the microcontroller system. Another method of
accessing memory locations is vectoring. Vectoring is a way of jumping or branching
from one location in memory to another by way of an interrupt. There are two types of
interrupts, hardware or software. Often the vectors are held in RAM but can be placed
just about anywhere in the memory map.

User RAM

Random access memory (RAM) is used in a microcontroller to temporarily hold data that
is used in the program. The RAM can be either volatile or non-volatile. Volatile RAM is
RAM that empties when the power is turned off. Non-volatile RAM keeps its memory
even when the power is off. Thisis usually accomplished by way of battery back-up. The
battery could be located on the PCB or on top of the RAM chip itself. Just because non-
volatile RAM holds its memory when the power is off does not mean that the memory
will never disappear. A common mistake that is made by hardware and software
engineers is thinking that the RAM memory will last forever. Often either outside static,
high voltage or the program itself can corrupt the RAM. This can happen by doing
something as simple as turning the power to the device on and off. The program can
cause the RAM to become corrupted by writing over the data area of the RAM. This can
happen if the microcontroller becomes spiked due to high voltage spikes or power surges.
In amicrocontroller system, there are three possible RAM locations:

¢ In the micracontroller itself
e |n external chips
e |n external deviceslike LCD displays

62 Practical Embedded Controllers

421

4.2.2

Microcontroller internal RAM

The RAM on the microcontroller is usually very limited. Often this RAM will be
measured in bytes instead of kbytes or Mbytes. The 6BHC11 microcontroller has between
192 bytes and 1 Kbytes of RAM with an average of about 512 bytes. Initially the RAM is
located from $0000 to $01FF but it can be relocated anywhere in the 64K area of the
microcontroller. This is done by writing to the INIT register. This must be done within
the first 64 cycles of the microcontroller after reset. The location of the relocated RAM
must be at a 4K page within the 64K memory, although most programmers leave the
microcontroller RAM at its default. This puts the RAM at $0000 to $01FF with the
internal registers at $1000 to $103F. After 64 cycles of the clock after reset the INIT
register is write-protected and cannot be changed. Even 512 bytes are not enough RAM
for most programs. The programmer can expand the RAM using external RAM in the
expanded mode. The expanded mode allows the programmer to boot off of an external
chip like an EPROM.

Part Number |EPROM | ROM | EEFROM | RAM | CONFIG'| Comments

1C68HC11A8 - - 512 258 $0F Family Buit Around This Device

1C68HC11A1 - - 52 256 $oD 'A8 with ROM Disabled

1C68HC11A0 - - - 256 $0C | 'A8 with ROM and EEPROM Disabled

1C68HC811A8 - - 8K+512 | 256 $OF EEPROM Emulator for ‘A8

1C68HC11ES - 12K 812 512 $OF Four Input Capture/Bigger RAM 12K ROM

1C68HC11E - - 512 812 $0D 'ESQ with ROM Disabled

1C68HC11EQ - - - 512 $0C | 'E9 with ROM EEPROM Disabled

1C68HCB11E2 - - 2KF 256 $FF No ROM Part for Expanded Systems

1C68HC711E8 12K = 512 512 $OF One-Time Programmable Version of 'E9

1C68HC11D3 - 4K - 192 N/A Low-GCost 40-Pin Version

1C68HC711E9 4K - - 152 N/A One-Time Programmable Version of 'D3

1C68HC11F1 - - 512 1K $FF High-Performance Nonmultiplexed 68-Pin

1C68HC11K4 - 24K | 640 768 | $FF | >1Meg memory space, PWM, Cs, 84-Pin

1C68HC711K4 | 24K - 640 768 $FF | One-Time Programmable Version of 'K4

1G68HC11LE - 16K 512 512 $0F Like "E9 with more ROM and more 10, 64/6

1C68HC711L6 16K - 512 512 $OF One-Time Programmable Version of 'L4
Table4.1

M68HC11 family members (Courtesy of Motorola)

External RAM

Externa RAM memory is one or more |C chips that are used to hold large amounts of
data. Some adventurous (stupid) programmers store the program in this externa RAM.
This is not safe. The RAM can be easily corrupted as mentioned above. The externa
RAM can be located anywhere in the 64k-addressing scheme as long as it doesn’t conflict
with the internal RAM, ROM, EEPROM or registers of the microcontroller. But it should
not conflict with any other external memory. It is possible to use external EEPROM
instead of RAM, but this is not as straightforward as it sounds. Writing to RAM is very
simple but writing to an EEPROM is not.

Microcontroller memory 63

An example of writing datato aRAM location is...

RAM LDAA #3$30 Loads accumulator A with $30
STAA $CO00A Stores $30 in RAM at address $C00A
RTS Return to subroutines

Because RAM can get corrupted easily it is important to clear the RAM at start up and
to check every so often that the datain the RAM is not corrupted.
There are three rules for guaranteed quality RAM:

¢ NEVER put the program in RAM, only temporary data. It is tempting to place
the program in RAM, but as mentioned before, RAM is very susceptible to
static and noise

o Clear the RAM at the beginning of the program. Thisis easy and only takes a
few instructions. The following example clears 4K of RAM starting at $C000
by placing $FF in each memory location

CLEAR LDAA H#HSFF Load A with $FF
LDX $C000 Point to RAM
LOOP STAA $00,X Store $FF in RAM
INX Increment the RAM location
CPX #SCFFF Isthe Clear at the end of the RAM
BNE LOOP If not at the end of RAM then LOOP
RTS Return to subroutine
Load A With$FF
Paint To $3000
With X
Stare Ain X

At the BEnd o
Memory?

Figure4.2
Flow chart for clearing ram memory

64 Practical Embedded Controllers

o If dataisreally important, write it to EEPROM and compare the datain RAM
with the EEPROM. (NASA writes to three places and votes on the correct
data)

4.3 BUFFALO routines, memory map and vectors

4.3.1 BUFFALO as a development tool

Bit user’'s fast friendly aid to logical operation or BUFFALO is a common utility for
development on microcontrollers. It contains many subroutines that can be used by the
programmer during development of an embedded controller system. The most common
subroutine is the one that lets the EVM communicate with the outside world using the
SCI port. This port is part of the HC11 microcontroller and most EVM manufacturers use
this port to connect to the RS-232 voltage standard. The following is alist of some of the
BUFFALO subroutines.

4.3.2 BUFFALO utility subroutines
$FF7C WARMST Go to > prompt

$FF7F BPCLR Clear Breakpoint Table
$FF82 RPRINT Display user’sregisters
$FF85 HEXBIN Convert ASCII character in A to a4 bit binary number

$FF88 BUFFAR Read 4 bit hex number from input buffer to SHFTREG.
$FF8B TERMAR Read 4 digit hex number from serial port to SHFTREG.
$FF8E CHGBYT Write value from SHFTREG+1 to memory location
$FF91 READBU Read next character from input buffer.

$FP94 INCBUF Increment input buffer pointer.
$FF97 DECBUF Decrement input buffer pointer.
$FF9A WSKIP Read input buffer until non-whitespace character.

$FFOD CHKABR Monitor input for Ctrl-X, Delete, and Ctrl-W.
$FFAO0 UPCASE Convert character in A register to upper case.

$FFA3 WCHEK Return with Z flag set if char in A register is whitespace.
BUFFALO considers space, comma, and tab to be
whitespace.

$FFA6 DCHEK Return with Z flag set if character in A register isadelimiter

$FFA9 INIT Initialize 1/O devices.

$FFAC INPUT Read from serial port

$FFAF OUTPUT Write to serial port
$FFB2 OUTLHL Convert left nibble of A register to ASCII and print it
$FFB5 OUTRHL Convert right nibble of A register to ASCII and print it.

$FFB8 OUTA Print character in A register.

$FFBB OUT1BY Print one hex byte at memory location pointed to by X
register.

$FFBE OUTIBS Sameas OUT18 'Y, but print a space as well.

$FFC1 OUT2BS Same as OUT1BY, but print two bytes followed by a space.

$FFC4 OUTCRL Print carriage return followed by linefeed.

$FFC7 OUTSTR Print the string pointed to by X register. $04 marks the end of
the string.

Microcontroller memory 65

$FFCA OUTSTO Same as OUTSTR, but without the leading CR/LF.

$FFCD INCHAR Read a character and echo it. Return character in A
This routine loops until a character is received.
$FFDO VECINIT Initialize the pseudo-vector table.

4.3.3 BUFFALO memory map

Figure4.3
BUFFALO EPROM on EVM Board

The following memory map shows the location of various stacks, variables, vectors and
registers associated with the microcontroller.

$0000-$0047 User RAM and User Stack
$0048-$0065 BUFFALO Stack

$0066-$00C3 BUFFALO Variables
$00C4-$00FF Interrupt Pseudo-V ectors
$0100-$01FF User RAM

$1000-$103F HC11 Control Registers
$8000-$8001 LCD Data and Control Registers
$B600-$B7FF EEPROM

$C000-$DFFF Memory Socket

$EOOO-$FFFF Memory Socket Containing BUFFALO EPROM

66 Practical Embedded Controllers

4.3.4

4.4

BUFFALO interrupt pseudo-vectors

A pseudo-vector is a vector defined by the BUFFALO (in this case) to point to a specific
address. The programmer can define the interrupt vectors as needed by the program. The
BUFFALO points all of the interrupt vectors to a set of pseudo-vectors in RAM. The
programmer is free to change them. Each pseudo-vector contains 3 bytes of data, one
instruction and a two-byte address such as ($7E) followed by the address of the service
routine.

SCl $00C4
SPI $00C7
Pulse Accumulator Input $OOCA
Pulse Accumulator Overflow $00CD
Timer Overflow $00D0O
Output Compare 5 $00D3
Output Compare 4 $00D6
Output Compare 3 $00D9
Output Compare 2 $00DC
Output Compare 1 $OODF
Input Compare 3 $OOE2

Input Compare 2 $OOES

Input Compare 1 $OOE8

Real Time Interrupt $OOEB
IRQ $00EE
XIRQ $00F1

SWi $O0F4

Illegal Instruction $O00F7

COP $O0FA
Clock Monitor $OOFD

Interrupts, vectors and pseudo-vectors

A vector contains the start address of areset or a subroutine. The pseudo-vector addressis
a specific address that contains the 3 bytes of information about the vector. The first byte
is usualy a IMP or BRA type of instruction with the next two bytes the address of the
subroutine. The chip manufacturer defines the vectors while the programmer or
BUFFAL O defines the pseudo-vectors. An example of vectoring could be...

If the IRQ hardware line goes low (0 volts), the microcontroller puts the IRQ’s vector
contents $00EE (FFF2 and FFF3 as defined by Motorola) in the program counter of the
microcontroller. The microcontroller then executes the user-defined 3-byte instruction
starting at $OOEE. The instruction located at $OOEE could be $7E (IMP) $CO000. This
address, $C000 would be the address of the start of the subroutine that services the IRQ.

44.1

Microcontroller memory 67

DAQ CARD CPU
M DATA BUS
PRIORITY SET LINE
IRQ LINE

MEMORY

i

PRIORITY
CHIPS

Figure4.4
IRQ

Software vs hardware interrupts

Hardware interrupts and software interrupts are the two ways the programmer has of
telling the microcontroller that something has happened in the outside world or in the
program. An interrupt can be compared to a telephone call. When the phone rings thereis
an interrupt. Plugging in the phone is enabling the interrupt. Needing a phone card to use
the phone is like having a maskable interrupt. Only people with the phone card can use
the phone. Telephones that work without a phone card are like a non-maskable interrupt.
Anyone can use the telephone.

The programmer can program the microcontroller to ignore certain interrupts by either
not enabling the interrupt or using a maskable interrupt. To enable or mask an interrupt
the programmer would use an enable or mask bit in the interrupts setup register.

Vector | Address | Source Vector Pseudo-
vector
$FFFO Fl RTI $00EB $7E $C500
$FFF2 F3 IRQ $00EE $7E $C15A
$FFF4 FS XIRQ $00F1 $7E $C19B
$FFF6 F7 SW1 $00F4 $7E $C367
$FFF8 PO IOT $00F7 $7E $C256
$FFFA FB COP $O0FA $7E $EO00
$FFFC FD CMF $00FD $7E $EO00
$FFFE FF RESET $E000
Table4.2

Vector assignments (Courtesy Microcontroller Technology Spasov)

Hardware interrupts by definition require a hardware line to initiate the interrupt. This
hardware line could be attached to a card, module or device. An example of this could be
a non-maskable hardware interrupt line from a data acquisition module (XIRQ). When

68 Practical Embedded Controllers

4.4.2

the data acquisition module needs to send data it would place alow (0 volts) on the IRQ
line into the microcontroller. The microcontroller would then activate the vector located
at $FFF2 (see table 4.2). The vector would then run the pseudo-vector as explained in
434

A program can activate its own software interrupts. The programmer may want to jump
to a pseudo-vector based on an error or something that has happened within the program.
A software interrupt as the part of a subroutine might look like the following.

ERROR LDX FAILURE Points to failure address

CPX #301 Check if afailure occurred ($01)

BNE END If not return to subroutine

SWiI Software Interrupt
END RTS Return to subroutine after

interrupt
Load X With
FAILURE

IsTherea

Failure ? Wait For Interrupt

Figure4.5
Flow chart of wait for software interrupt

Maskable vs non-maskable interrupts

As mentioned before it may be necessary for the programmer to mask off an interrupt.
Masking an interrupt can be compared to placing a mask over your face. People will only
see those parts of your face that are not masked. When an interrupt is activated the
microcontroller will only see the interrupt if the bits that are not masked are enabled. An
example of the maskable interrupt could be the SCI (asynchronous communications)
interrupt. The SCI interrupt is a maskable interrupt that activates when a character is
ready to be received or transmitted by the microcontroller. The following example shows
how the maskable interrupt might work. The receive interrupt could be masked by bit 5
(RDRF receive ready) of the SCSR2 ($102E) register. Bit 5isset to a 1 if a character has
been received is ready to be collected. A O here masks the interrupt and does not let the
program collect the character from the SCI port. This register could be read by the
program as follows...

COMMSLDAA $102E Load A with SCSR2 Register
BITA #$20 Check if bit 5isal (mask)
BNE COMMS If bit 5isa0 Then Loop
LDAA $1008 Load A with the Character in SCI Port
RTS Return to Subroutine

Note: The BITA instruction does not change the value in accumulator A.

Microcontroller memory 69

Load A with the
Vauein SCSR2

LoadA with
Character in SCI Port

U

RTS

Figure4.6
Flow chart of masking a register

SCI Serial System

Interrupt Request (IRQ)
External Interrupt (XIRQ)

SPI Transfer Complete

RTI Interrupt

Timer Input Capture 1

Timer Input Capture 2

Timer Input Capture 3

Timer Output Compare 1
Timer Output Compare 2
Timer Output Compare 3
Timer Output Compare 4
Timer Input 4/ Output Compare 5
Timer Overflow

Pulse Accumulated Overflow
Pulse Accumulated Input Edge

Table4.3
Maskable interrupts (The M6BHC11 microcontroller Kheir)

Non maskable interrupts are interrupts that cannot be masked. They are defined by the
microcontroller.

70 Practical Embedded Controllers

4.5

45.1

45.2

Reset

Clock Monitor

COP Watchdog

Illegal Opcode

Software Interrupt (SWI)

Table4.4
Non-maskable interrupts (The M68HC11 microcontroller Kheir)

Control registers

Memory mapped I/O

A microcontroller would not be of much use if it couldn’t communicate with the outside
world. One of the main differences between a CPU and a microcontroller is that a
microcontroller has on board inputs and outputs. An I/O is a line or collection of lines
(bus) that can be defined as either inputs or outputs. When we discuss 1/0 we usually
mean digital inputs or outputs. Analog inputs or outputs sometimes use the same lines as
digital inputs. The way the lines are configured is defined or controlled by the data
direction control registers. By setting a certain bit or bits in the data direction registers (a
lissetting a0 isclearing), the programmer is able to control one or more 1/O lines.
Following isalist of 1/0 ports and their respective data control registers

/0 Address Notes Register Address
Port A $1000 Fixed ex Bit3and 7 PACTL $1026
Port B $1004 Fixed None None
Port C $1003 /O DDRC $1007
Port D $1008 /O DDRD $1009
Port E $100A Digital or Analog Input None None
Table 4.5
1/0 ports

Accessing and using control registers

Control registers are used for many purposes:

o Datadirection

e Enabling interrupts

e Masking

o Baud rates

e System configuration

¢ Input and output compare

A typical example of using a control register would be...

COMSET LDX $102B Point to baud Rate Register
LDAA #$30 Load A for 9600 baud
STAA $00,X Store $30 in baud Register

4.6

Microcontroller memory 71

LDX $102C Point to SCCR1
LDAA #3$08 Put 000010000 in A
STAA $00,X Store $08 in SCCR1 register
LDX $102D Point to TX Set Register
LDAA #3$2C Load 00101100in A
STAA $00,X Putinitin SCCR2 Register
RTS Return to Program
1
Foint to Baud Rate Register Load A with $08
Load A with $30 For 9600 Rut in SCOR1 Pu in SCCR 2

¥ J J

Point to SCCR2 Comns Setup
Register

U U

Pointto SCCR1L Comms Setup
Register

Figure4.7

Control register setup flow chart

Put in Baud Rate Register

Load A with $2C

In the above example the value $30 is stored in the register that defines the baud rate of
the microcontroller. When $30 is placed in the baud rate register, the communications is
setup as 9600 baud. When $08 (00001000) is stored in the SCCR1 ($102C) register, it
sets the SCCR1 setup register for 8 data bits, no parity and 1 stop bit. Next the value $2C
(00101100 is stored in the second SCI setup register (SCCR2 at address $102D). Bit 5
enables the interrupts for the communications port. The port does not have to poll the
external device for information. Bit 3 is used to enable the transmitter and bit 2 is used to
enable the receiver. When receiving or transmitting data to or from port D, the program
uses the SCSR2 ($102E) to view the status of the communication port. It is often
necessary to retrieve the status of the communications port before any character is sent
and when a character has been received.

EEPROM

Electrically erasable programmable read only memory devices (EEPROM) are becoming
very popular in microcontroller systems. Notice that this is a contradiction. How can a
device be both erasable and read only? But it is. The reason for thisis that once the device
has been programmed the device acts very much like a ROM (read only memory). The
EEPROM is very stable and not easily spiked or corrupted by high voltage or static. The
down side of the EEPROM is that it is difficult to program. The EEPROM programming
method is not as straightforward as RAM. In RAM the microcontroller ssmply puts the

72 Practical Embedded Controllers

4.6.1

data in the memory location. Any data that is there already is written over. The write-
enable line for the RAM chip is automatically set by the store instruction.

Programming an EEPROM is a two-step function. First the memory has to be cleared
and then the data is written. One problem is that the EEPROM writing system only
changes the 1s to Os in the memory. This means that if there already is a0 in a memory
location and a 1 is put in that location the O will not change to a 1. This could cause
problems with wrong data. All ones must be placed in the EEPROM memory before any
data can be written. Another situation with EEPROMSs is that once the data has been sent
to the memory location a high voltage 12 V must be placed for a short time on the chip.
The voltage is placed on the chip by sending a byte of data to the EEPROM setup
register. After a short delay the burn in voltage is turned off. This has to happen every
time abyte is saved to an EEPROM memory location.

Clearing the EEPROM example

AREA EQU $B600 EEPROM memory location
EESET EQU $103B EEPROM setup register

Writes $FF from $B600 to $B6FF EEPROM Memory Locations — Pre-Clear

EECLR LDX #AREA Point to EEPROM setup register
LDY #EESET Point to EEPROM memory location
LDAB #$10 Loads B with 16 byte count

LOOP LDAA #$16 Load A with 00010110
STAA $00,Y Store $16 in EEPROM (setup for write)
LDA #$FF Load A with 11111111
STAA $00,X Store $FF in EEPROM memory location
LDAA #3$17 Load A with 00010111
STAA EESET Activate high voltage for burnin
JSR DELAY Delay 10 msfor burnin
CLR $00,Y High voltage off and sets EEPROM to read
DECB Decrement the 16 count
CMPB #3$00 Check if done
BNE LOOP If not done the loop

RTS Return to subroutine

Microcontroller memory 73

—|—|

SoreA in EEFROM Bun In

Paint to EEPROM Setup

Regist i
o5 StareAinY Regster
Point to Top of EEPROM (] ¢ [] Delay
Mamory
Load A with 11111111 (FF)] [
U Stop Bun In
Load B with $10 (16) Court H
Stare Ain BEEPROM Mamory Decremert B Court
Location

Isthe Count
Done

] Loed A with $16 $

Load Awith$17

L]

S

Figure4.8
Clearing the EEPROM flow chart

4.6.2 Writing to the EEPROM example

Writes 16 bytes of data at STRINGL1 to the EEPROM
Note: Setting bit 1 ($02) of the PPROG ($103B) register enables the EEPROM as
being able to be written to and setting bit 0 also ($03) enables the burn in mode.

EERITE LDY #AREA Point to EEPROM areafor data
PSHY Push area pointer on the stack
LDX #STRING1 Point to string of datato be stored in

EEPROM

LDAB #$10 Load count with 16 characters

LOOP LDAA #$02 L oad 00000010 for EEPROM write mode
LDY #EESET Point to EEPROM memory location
STAA $00,Y Store $02 in setup register (write mode)
PULY Get the EEPROM area from stack
STA $00,Y Store character in EEPROM memory
INY Increment the EEPROM area
PSHY Push EEPROM area onto the stack for later
LDB #3$03 Put high voltage for burnin
LDY #EESET Point to EEPROM memory location
STAA $00,Y Burnin data
JSR DELAY Delay 10 ms
CLR EESET High voltage off
INX Increment character
DECB Decrement the character count
CMPB #3$00 Check if done
BNE LOOP If not done loop
PULY Pull EEPROM areafor last time.

RTS Return to subroutine

74 Practical Embedded Controllers

4.7

Notice in the above example that the Y register is used for both the EEPROM area
location and EEPROM setup register. The stack is used to hold the string area pointer
when'Y is being used to hold the EEPROM setup register. Also note that it isimportant to
pull the EEPROM area location from the stack when finished.

| |
Fointto Top o EEPROM Poirt to EEPROM Setup Load B with $03 For Burn|
MerTory With ¥ Register With Y (EESET) wi ,$_°|3 renin
ﬂ SoreA (@) inY Poirt to Sup
i WithY
Push " y) Register F_ (EESET)
Address On The Stack U l [
Pul EEPROM Locdion Y Sat Bum In
From Stack
Paint to Start on String with X U |_|
Write Cheracter to EEPROM Dday
! _ 0 - §!
Load Bwith $10 Count Incremant the EEPROM Turn Brnin OFf
Location Y

1l i il

Loed A with $02 EEPROM

- Push EEPROM Location beck Increment Cheracter
(Write Modk) on the Stack For Later .
\— Decrement the 16 Cheracter
Court B

Pdl Y from Stack For Last
Time
I

RTS

Figure4.9
EEPROM write flow chart

Conclusion

In the early days of electronics, memory chips were very expensive and it took a lot of
chips to make up a small amount of memory. Now the prices have fallen dramatically (in
fact if you check the magazines, they usually say CALL for prices). Soon gigabytes of
memory will be available on a single chip. Microcontroller systems have yet to take full
advantage of this explosion in memory. Most microcontroller systems still talk about
kbytes of memory at best. The 68HC11 microcontroller has a maximum of 1 K of RAM
and 512 bytes of EEPROM. Because of this small amount of on board RAM and
EEPROM most designers have to include externa chips such as battery backed RAM,
EPROM and/or EEPROMSsin their circuits.

Microcontroller memory 75

Ir

UT6264PC-70LL

HErt v ere e

ssealbsiiididad

o e e oW W om m omom
RN NN N A NN NN

0] BN N . N N . R e e e . .

e s

Figure4.10
Microcontroller, RAM and EPROM

Memory within the microcontroller system can be accessed by instructions within the
program. Depending on the type of memory and its location in the Memory Map the
programmer may use RAM for one type of data or an EEPROM for another type. The
programmer often uses vectoring to move around within the memory map of the
microcontroller system. The vectoring system is partly defined by the manufacturer of the
chips and partly defined by the programmer. User definable pseudo-vectoring allows the
programmer to have an interrupt vector to amost anywhere in the total memory map of
the microcontroller system. These interrupt vectors can be masked or non-maskable. The
maskable interrupts let the programmer set conditions for certain interrupts. Whereas the
non-maskabl e interrupts are defined by the chip manufacturer and never change. This has
the advantage that the programmer can depend on them to work the same way every time
without worrying about configuration.

The maskable interrupts are configured using control registers. These control registers
are bit oriented and every bit may have a specifically defined purpose. The bits are either
set or cleared in the program by the programmer to configure the register. Besides being
used for maskable interrupts the control registers are often used for control of the 1/0
ports within the microcontroller. These ports can be digital outputs, digital inputs or
analog inputs. The control registers often define the direction of the I/O lines on the ports.
The registers can also define conditions for memory like the EEPROM. Setting one bit on
acondition control register could tell the EEPROM that it is read mode or write mode.

It is hoped that in the near future the huge amounts of memory that are being seen in the
personal computer industry will be included in microcontroller systems. Until that day we
will still need the programmers’ skill in manipulating the code to optimize the volume of
the program. External chips take up room, power and add substantially to the cost of the
microcontroller device

5.1

Microcontroller inputs and outputs

Objectives

When you have completed this chapter you will be able to:

o Describe the differences between single ended and differential inputs and
outputs

¢ Explain how digital inputs and outputs are used in a microcontroller

¢ Explain how analog inputs are sampled by an A to D converter

¢ Describe the Nyquist sample rate and how it relates to sample frequencies

¢ Describe the digital control of analog devices

¢ Describe how to interface a keypad to a microcontroller

¢ Explain how to interface an LCD screen to a microcontroller

Introduction to inputs and outputs

The ultimate goal of most controllers is to take in data, do something with that data and
then output some signal that ultimately controls a device. To accomplish this it is
necessary to use digital and analog inputs and outputs. Because controllers are getting
smaller, cheaper and easier to use, the amount of data acquisition and control in industry
is expanding tremendously. It is therefore important to understand the different types of
inputs and outputs and how they interact with each other. This chapter will discuss single
ended and differential digital and analog inputs and outputs and how they relate to
microcontroller systems.

5.2

5.2.1

Microcontroller inputs and outputs 77

Supply Voltage

Sensor
Excitation
Selector

Input
Multiplexer
Excite * O ® "
+input + O [0
uard (G
-input - O ® g (G)
Return R O X
<
1000 2
@ Selector A
Excite @ (4]
+input + O ®
-input - O &
Return R O ® H
1000 3 Selector
ks ®
Instrumentation

Analog Amplifier
GND
SE ref v

Digital
GND

Figure5.1
Digital inputs and outputs

Single ended vs differential inputs

There are two different types of input circuits used in data acquisition systems. One is
single ended and the other is differential. Each of these circuits has their uses and their
good and bad points. Different types of circuits could or should be used depending on
different situations. With these circuits nothing is absolute and both types could be used
in the same circuit. But having said that, the user and engineer probably would find that
in some situations one is greatly preferred over the other.

Single ended analog circuits

Single ended analog circuits are used to input analog values of voltage, current or
resistance into a microcontroller. One side of the connection is commoned together with
the common side of the other circuits. This common lineis usualy placed at ground level,
either at the sensors or back at the equipment. In most single ended systems the common
lines are connected together out in the field. There is a version of this called pseudo-
differential where the two wires from the sensor are brought back to the equipment and
one is connected to a common there. Pseudo-differential is electrically and functionally
single ended. The advantage of single ended analog circuits is that only one input channel
is needed for each analog input. This reduces the number of channels and cost of an
installation. The disadvantage of single ended analog input systems is that they are very
susceptible to noise. Any change in the potential voltage difference in the ground level
will change the output of the sensor as seen by the equipment. This noise is very difficult

78 Practical Embedded Controllers

5.2.2

to remove because the noise is ground based. Often the best way to reduce noise induced
on single ended systems is to use atransformer or choke based isolator.

Transducer

Optoelectric

Common mode —
choke

Figure5.2
Sngle ended analog circuit

Single ended digital circuits

Single ended digital circuits are typically used to connect switches together. These
switches can be either mechanical or electronic. Again the common lines of the switches
are either connected together in the field or they are connected together back at the
equipment. The advantage of single ended inputs is the same as analog inputs, only one
channel per input. One difference between analog inputs and digital inputs is that digital
inputs are more resistant to noise. This does not mean that digital inputs are completely
immune to noise. Ground based noise can affect digital inputs, it just takes a stronger
noise signal. To make the digital input more resistant to ground induced noise the
switches are often connected to the equipment via opto-couplers. These opto-couplers
isolate the ground from the equipment and therefore reduce the amount of noise. The
opto-isolator is a voltage saturation device. This means that for it to work the voltages
must be typically either +5 volts or ground. Small voltage changes are ignored by the
opto-isolator.

Vin

Figure5.3
Single ended digital circuit

5.2.3

5.24

Microcontroller inputs and outputs 79

Differential analog circuits

Differential analog systems are connected by installing each wire from the sensor into a
different channel on the equipment. Differential analog circuits take twice as many
channels as single ended analog circuits. Because the two lines are referenced to each
other and not to ground, differential circuits are much more resistant to noise than single
ended circuits. The differential nature of the circuit gives a measure of isolation for each
line to ground. The value of this measurement is defined as common mode resistance
ratio. The CMRR value is defined by the manufacturer in db. A reasonable CMRR level
would be around 90 db. Common mode voltages can be adjusted by using external
resistors. The manufacturers usually define the value of the resistors, but often they are
around the 100 kQ) area. Both resistors must be equal.

Hint: if using an oscilloscope to look at common mode voltages, make sure the input to
the oscilloscope is differential and not single ended. Most oscill oscopes are single ended.

R e e e e e e e e

Extrernal signsls Crable Haost irpnt conrertor

F3, S

r

Input amplifier
with gain C

Input
Multinlexer O

(BES

Al

Cigital
Vous Code

Input
Multinlexer 1

Retarenca ground

Row N AGND ar OV
' \ syster refe-ence ground point

Figure5.4
Differential analog circuit

Differential digital circuits

Digital differential inputs are often switch inputs and are used where high noise can be a
factor. These inputs also often use opto-isolators to reduce noise and provide protection
against high voltages. When switches are located outside and have long leads they are
very susceptible to lightning and static voltages. The use of a differential two-channel
input and the saturation of the opto-isolator greatly reduce the chance of noise or high
voltage. Noise created by high voltages can cause incorrect inputs. But no equipment is
completely immune to noise or lightning, no matter how well protected. The disadvantage
of differential digital circuitsis the high cost due to the use of two channels and the extra
equipment needed for the opto-isolation. The advantage is of course their high noise
immunity.

80 Practical Embedded Controllers

5.3

5.3.1

o e e o o o o o o o o e e

External Bwitrhes Cabile p; 7 Hast irpit conrertor
S
CE =
. - @ CH, Hi
A _/J Cs | A °
. gé Input amplifier
: £8 with gain C
=]
X =
: 4 —
<. . —
ES, : ES. +Vo, AL —
Viw . —
. -
- - L .
. 33 Digital
. =] -
- == Vo s Code
: =
<
——(/) Acnn ’
Retarencs gronnd L l
. N\
R - AN AGND ar OV
o \ syster refe-ence ground point
- e o - o o o . o o e o . . .
Figure5.5

Differential digital circuit

Digital inputs

Switch sensing and de-bounce

Digital inputs are usually switch closures and most of the time these are mechanical as
opposed to eectronic switches, although this may change in the future. For the moment
we get most of our information about the outside world using mechanical switches. One
of the problems with mechanical switches is de-bounce. When a mechanical switch closes
the metal parts compress and then relax. At this point the switch opens and closes very
guickly. The problem is that the microcontroller can read the switch so fast that the
microcontroller sees the switch open and close during the bouncing of the metal parts.
The microcontroller would then see multiple switch closures. To adjust for this bouncing,
the designer would put in some type of de-bounce. In the early days of microcontrollers,
engineers used transistors and chips to delay the reading of the switch during the
bouncing. Now most de-bounce is done in software. The programmer writes a subroutine
that reads the input then delays for a period of time and then re-reads the switch. If the
programmer had just put in adelay and didn’t re-read the switch, then the microcontroller
might see false switch closures.

5.3.2

5.3.3

Microcontroller inputs and outputs 81

Figure5.6
Mechanical switch

Normally open (NO) and normally closed (NC) switches

Switches are known in the industry as either normaly open or normally closed. A
mechanical switch is considered normally open if the contacts are open at rest. It is
considered normally closed if the contacts are closed at rest. At rest can sometimes be
subjective and different manufacturers sometimes mark their switches differently. For
example, is a magnetic switch at rest when the magnet is next to the switch? Or is it at
rest when the magnet is away from the switch? Security systems normally use contacts or
switches that are normally closed when the magnet is next to the switch. This is done so
that if the bad guys cut the wires the circuit will be open and the alarm will go off.
Thieves of course know this, and often short out the switches in hope of disabling the
system. A good alarm system would then use a combination of both NC and NO
switches. Most switch sensor systems connect one side of the switch to a common ground
wire and the other to the equipment. In this way only one more wire than the number of
switches comes out of the equipment. 1.e... 5 switches — 6 wires.

A A

Normally Cpen Normally Closed
NO NC

Figure5.7
Normally open and normally closed switches

Electronic switches

Electronic switches use either chips or transistors to indicate a change in state. These
circuits are often magnetic, inductive, infrared, or radio frequency devices. Because they
are electronic, they are more complicated and require power from mains or batteries.
Another problem with electronic switches is that they are highly susceptible to
electromagnetic fields (radio frequencies), to the point that a strong enough field could
activate, deactivate or even destroy the switch. Use of mobile phones and other

82 Practical Embedded Controllers

5.4

5.4.1

transmitters should be kept well away from all electronic switches. These complications
are negated by the fact that electronic switches can recognize situations that mechanical
switches cannot. For example microwave sensors can see through materials, infrared
devices can seein the dark and inductive devices can sense magnetic fields.

Figure5.8
Electronic switch

Digital outputs

Digital control

Outputs from a microcontroller can control any type of electrical or electronic equipment.
Most control of devices today is done using digital control. In the Eighties digital to
analog control was seen as the way to control analog devices. The logic was that the
microcontroller was digital and the world was analog and therefore we would need lots of
digital to analog control circuits. Before computers, nearly all electrical devices were
digitally controlled. Switches and relays were used to control all equipment. When
computers were developed it was redlized that it would be easy to continue to control
things digitally. Even today there is very little analog control compared to digital control.
Remarkably we now control some analog functions using digital control. For example a
stepper motor isadigital device, even though it moves in an analog manner.

Figure5.9
Sepper motor (Courtesy of www.Phytron.com)

5.4.2

Microcontroller inputs and outputs 83

Microcontrollers use address decoders and hardware drivers to connect to
electromechanical and solid-state relays. Often successive relays are used to increase the
current and/or voltage output. The address decoder is used by the microcontroller to
connect to the correct device. For example the programmer may want to turn off an
output. To get to that output the programmer would do something like this.

LDX $1008 Point to the address of port D with X
LDAA #$01 Load the data 0000 0001 into A temporarily
STAA $00,X Store the dataiin bit O of port D

Notice that a 1 turns bit O off. This is very common as a 0 is often ON in digita
outputs. The address decoder sees $1008 on the bus and knows this is port D. It then
views the value $01 on the data bus and puts it in the port D output register. This may be
the last driver in the output chain or the designer may have put another driver in the
circuit likeaULN 2003. The ULN 2003 driver isavery common relay driver chip.

Back EMF causes and solutions

The main problem with using relays to control devices is back EMF (electro magnetic
force). Back EMF happens when the relay is turned off and the magnetic field collapses
across the coils of wire in the relay. The collapsing field induces a large voltage in the
relay. Lenz's law states that the voltage produced by a coil is determined by the size of
the field, the number of coils and the speed at which the field cut across the coils of wire.
Long lengths of the wire connected to the relay can also add to the back EMF voltage.
This happens because the field around the long wire collapses and cuts across the wire.
This adds to the back EMF voltage.

Solid-state relays are not relays at al. They arereally transistors controlling devices. So
called solid-state relays are often thought of as a good replacement for relays, but they
have problems. The back EMF created by coils or long wires can easily destroy a solid-
state relay. They are very sensitive to high voltages and static. If a relay, close to the
microcontroller is used to drive another relay, both relays have 10k of voltage protection
across their contacts. The solid state relay doesn’t usually have this protection. They do
not create back EMF, but they are very susceptible to back EMF.

v—
AT

Figure5.10
Shubber networks on DC and AC circuits

84 Practical Embedded Controllers

5.5

5.5.1

All relays should have snubber networks across their coils to eliminate any back EMF
problem. These snubber networks consist of either a diode, for DC relays or a capacitor
and resistor for AC circuits. A typical diode could be a IN4004 1/4 to 3 amp for the DC
relay. For the AC relay a 0.1 uFd AC capacitor with a 100 Q 1/4 amp resistor would be
typical. These values may be different for your system and it is best to check with your
manufacturer for the proper values.

Analog inputs

Voltage, current and resistive measurement

Typically data acquisition systems use analog inputs to measure voltage directly from a
sensor. If the user wants to measure current or resistance then a different and indirect
method is used. Current is indirectly measured by finding the voltage drop across a
precision resistor. Using Ohm's law, the microcontroller calculates the current. To find
the resistance, a known current is passed through the circuit and is divided into the
voltage that is measured across the resistor.

Voltages often don’'t come in the level we would like and therefore they need to be
adjusted. For example, a measurement system is designed as a 0 to +10 volt system, but
the voltage on the system is 0 to +12 volt. This means that a voltage divider network
would be used so that the voltage would be dropped to a more reasonable level.

AC and DC currents cannot be measured directly. To measure DC currents we would
place a low value precision resistor in line with the circuit. This resistor must be low
enough not to reduce the current used by the circuit. If the circuit is AC then
measurement is done by measuring the voltage drop across a coil of wire looped around
the current carrying wire. Using Ohm’ s law, if we know the impedance of the coil and the
measured voltage, we can calculate the current. For measuring resistance we place a
known current through the resistor and then measure the voltage drop across the resistor.
Again using Ohm’s law if we know the current and the measured voltage then we can
calculate the resistance. This known current is often 10 mA.

Voltage Current Resistive
I mA
—
(::] VFHCEISIJFC Known Vmcas-urc VFFICB‘SUFC
Resistor
Sensor V messure D Vmeasure
V =V measure I= R kown M. oA

Figure5.11
Voltage, current and resistive measurement

We can see by the following paragraph that whether we are measuring voltage, current
or resistance, in the end we have a voltage. The microcontroller samples the voltage on a
regular basis and a digital value in the form of ones and zeros is developed. The number
of ones and zeros used to define the number is called the resolution. For example...

Measured value +5 voltsfrom a0 to +10 volt level

Samplerate 1 thousand samples per second —

(1 sample every 10 second)
Resolution 12 bits— 4096 (0-2.44 millivolts per bit)

5.5.2

Microcontroller inputs and outputs 85

Digital value 1000 0000 0001 — binary, $800 — hex (2049 decimal)
Question... does 2049 x 2.44 equal 5? No, digital sampling rarely comes out even. The
calculated value is 4.99956.

Analog and digital filtering and amplification

When working with analog values the designer can choose between analog or digital
filtering. Often when a noise problem is diagnosed the engineer or technician thinks of
filtering first. It has been found that on new installations it may be better to look at
amplification first. One of the most common mistakes made in analog systems is
improper location of the amplifier. An example of this problem could be an analog
system where a sensor was being read by a microcontroller over a long distance with
injected noise. If the sensor had an output of O to 1 volt then the signal needs to be
amplified by ten somewhere in the system for afull scale of 0 to +10 volts. If thesignal is
amplified at the microcontroller end then the signal to noise ratio would not be good, but
if the amplifier were placed at the sensor end, then the signal to noise ratio would be
much better.

R4 R2
L L
R R L o
Vgo——/\ N\ /\/\ t
+
C — C — v, Vout

Figure5.12
Analog filter schematic

If filters are to be placed in the system, the designer needs to determine whether to use
analog or digital filtering. The type of noise that is being reduced will determine which
filter to use. Anaog filters are good at removing frequency-related noise whereas digital
filters are better at removing voltage noise. This is not to say that analog filters can't
remove voltage noise or that digital filters can’t reduce frequency information. Designers
usualy use the filter that works best for their circuit. For example if there were a spike of
voltage noise induced into a circuit, it would be possible to build an analog filter to filter
it. But the filter would a so attenuate the signal. Whereas a digital filter could easily filter
the spikes by removing the odd sample that has the spike without attenuating the signal.

86 Practical Embedded Controllers

5.5.3

— 0 00O 0 010
— 0 0 00 g0 11
- 0 0 00 ¢ 010
A I,
& YD (1111 11 11)
- 0 0 00 ¢ 0 01
— 0 0020 ¢ 010
— 0 000 ¢ 0 1 1 Delete
or
Average
with Bits
Figure5.13
Digital filtering

Nyquist and the sample rate

When measuring an analog input it is necessary to know how fast to sample the values.
The sample rate is a subjective measurement and therefore there is no perfect value. If the
value is sampled too fast the microcontroller will receive too many samples. If the
microcontroller samples too slow alias frequencies could be created. Alias frequencies are
a function of the Nyquist rate. Harold Nyquist developed the rule that the sample rate of
any frequency must be at least twice the highest frequency being sampled. If the sample
rate is less than twice the highest frequency being sampled, then aiases, or fake
frequencies, are created. Sampling of frequencies is similar to the mixing of frequencies.
When frequencies are mixed, the sum and the difference of the frequencies are created. If
a frequency of 1 kHz is sampled at 1.5 kHz then a 0.5 kHz alias frequency would be
created. Most of the time, actual sample rates range between 5 and 20 times the highest
possible frequency being sampled.

F1 25Hz

F2 50Hz

I F3 260Hz
Il LL T >
T 77

>

f.= B0Hz Sampling Frequency f—>

2] Fraquency spertrum of ariginal signal

F125Hz

AZ G0HL
A3 20Hz T

T

y 7 _»
T 77 >

[, = 80HZ - Sainuling Freguency f —>»

b} Fregquercy spaectram of ariginal and sanpled sionals

Figure5.14
Nyquist example

5.54

5.6

5.6.1

Microcontroller inputs and outputs 87

Resolution management

When measuring an analog input value it is necessary to match the resolution of the
microcontroller, the amount of information needed and the ability of the sensor to supply
the resolution. The resolution of the microcontroller defines the number of bits that will
be associated with the analog value. The most common resolution values are 8, 12 and
16. At +10 volts the following values would be produced.

8-bit resolution 256 possible values 39.06 millivolts per division
12-hit resolution 4096 possiblevalues 2.44 millivolts per division
16-bit resolution 65536 possible values 152.59 microvolts per division

The amount of bits sampled relates to between 3 to 6 times the amount of bytes needed
to store it. For example with 12-bit resolution in some devices it can take 6 k bytes of
memory to hold 2 thousand samples. The matching of the sample rate of the
microcontroller, the value of the highest frequency, the number of samples needed and
the ability of the sensor to give that resolution will determine the ideal resolution for that
system.

Digital control of analog devices

It was thought in the past that creating a voltage or current from a string of digital
numbers would be the way we would control analog devices. It is how becoming more
popular to control analog devices by turning the analog value on and off very quickly
with high-speed digital control. This is made possible because of high quality timing
circuits used in digital electronics today. The down side of controlling analog devices this
way is that the high speed switching can be complicated and transmit a huge amount of
noise. It works by reading the change in input voltage or current and then turning off or
on the input to the device. An example of this could be the brightness control of an LED.
The input current to the LED would be monitored and the input turned off when the
current value reached a certain level. This level would determine the brightness of the
LED.

Basic stepper motors

Stepper motors are another example of digital control of an analog device. Stepper motors
are named because of their ability to step whereas traditional motors were either rotating
or not. Turning on and off electro-magnets placed around the center rotor creates the
rotation of the motor (the central magnet around the shaft can be permanent or
electronic). The speed, direction and torque of the rotation are determined by how fast the
outer electromagnets are turned on and off.

88 Practical Embedded Controllers

5.6.2

5.7

5.7.1

pas

Figure5.15
Sepper motor diagram

Stepper motor control and communication

Due to the high torque of DC stepper motors and their ability to change direction very
quickly, they are often used in printers, plotters and robotic equipment. Often in a robot,
each stepper motor would have its own dedicated microcontroller. These microcontrollers
would then talk to each other over some serial bus system. The speed of the
communications then becomes critical to the smoothness of the robot's movements.
Using fuzzy logic and learning programs each of the stepper motors could anticipate the
next function and thus could reduce the amount of data communications.

Keypad interfacing

Connecting the keypad to the evaluation modules (EVM)

There are three types of keypads that are connected to EVMs. They are the 12 key
number keypad and the 16 key hex keypad and the full aphanumeric keyboard. The most
popular is the 12 key number keypad. The 12 keypad has all 10 humbers and (0 to 9) and
the# and * keys. This keypad islaid out in afour by three method. Four inputs are on the
rows of the keys and the three outputs are on the columns of the keys. This fits very well
with the four output pins and the three inputsin port A on the 6BHC11 microcontroller.

5.7.2

Microcontroller inputs and outputs 89

1 2 3

O O O —~—m
OO O [«
655+PA5
6&5+PA€

R nnnnnE
PAG PA1 PAZ llllTTT

Figure5.16
Keypad diagram and wiring

Reading the keypad in software

Reading the keypad is done by first checking if any key has been pressed. One of the
problems with this type of keypad is that there is no interrupt request pin that says that a
key has been pressed. So to see if a key has been pressed a 0 is placed on all the inputs
and then the outputs are read to seeif any O is present. If a0 isread on any column then it
is assumed that akey has been pressed.

LDAA #$07 Load A with 00000111

STAA $1000 Storeitin Port A

LDAA $1000 Read port A

ANDA #$78 Mask for output bits from keypad

CMPA #3$00 Check to seeif key is pressed

BNE KEYP If akey has been pressed then go to KEYP

RTS If no key has been pressed then return

90 Practical Embedded Controllers

Load A with $07

J

Store A in $1000
Port A

——

N Z

vV
And A with
01111000

Go ToKey P

Figure5.17
Key pressed flow chart

The subroutine to check the keypad would have to be run quite often in the program.
The keypad is only checked when this subroutine is activated. There is no delay between
the storing of #$07 in the accumulator A and the reading of accumulator A because we
are not concerned about de-bounce at this point. De-bounce is done later when we check
to see what key has been pressed. Any false key presses will be picked up later.

Once it is determined that a key has been pressed, the program would need to determine
which key had been pressed. To do this, first a 0 is placed on one of the input lines. The
output lines are then read. If the key is found the program branches off to the program. If
not the next row receives a 0 and the column is checked. This continues until all columns
are checked and the key that has been pressed is found. When the key has been found the
program then converts the key pressinto either an ASCII or hexadecimal number.

LDAA H#FT7 Thisload A with 1111 0111

STAA $1000 This placesa0in bit 3 which could be row 1
JSR DELAY Go to keypad delay then come back here
CMPA HSFE This checksto seeif bit 0isa0 (column 3)
BEQ CONVERT Ifitisa3 (row 1 column 3isthe 3 key)

BRA NEXTC Branch to next row check

Microcontroller inputs and outputs 91

Load A with $F7

y

Stare §7 in Port

Check Next
Row

HasKey 3
Been Pressed?

Corvert To ASA |

Figure5.18
Key press check flow chart

Notice that this subroutine only checks one key in one row. With a 12 key keypad there
are three keys in 4 different rows that need to be checked. This complete subroutine to
check al 12 keys would be very inefficient if written like this. The programmer could
write a program that places a 0 in the first row, then checks the three columns one at a
time. Then the 0 would be rotated to the next row.

5.8 LCD interfacing

Figure5.19
Typical liquid crystal display

92 Practical Embedded Controllers

5.8.1

The LCD display is a very popular device for displaying information from a
microcontroller. It is easy to use and is very powerful. The displays often have
microcontrollers incorporated within the display itself. The most common LCD is the 16
character by two-line display. This is a misnomer because the display actually has forty
characters across on each line, but only 16 can be seen. This is handy because the
programmer can hide characters and then shift them over as needed. The display also has
a little on-board RAM that can be accessed by the programmer. Newcomers to
programming often find it difficult to get the LCD display to work correctly. This is
usually because of the LCD setup sequence. The problem happens when the programmer
tries to use the register setup right at the beginning. Strangely the first setup sequence on
a LCD isatimed setup, from then on the programmer can use the register to determine if
the LCD is ready for another character. The following example is used as a timing reset
for the LCD. This should be used once and from then on a simple register check can be
used.

LCD software setup

LCD JSR DELAY Goto delay for LCD
LDAA #$38 Loads A with first control byte
STAA $8000 Storeit inthe LCD register
JSR DELAY Goto delay for LCD
LDAA #$0C Load A with OC for reset
STAA $8000 Storein LCD control register
JSR DELAY Gotodelay for LCD
LDAA #$02 Load 02 for reset
STAA $8000 Storeit inthe LCD register
RTS Return
LCD
) Store Ain LCD
Deay Load A with $0C Register
Store Ain LCD Dd
Loed A with $38 Register &y
Sore $38in LAD Dday RTS
cortrol register H
Day Load A with $02

Figure5.20
LCD setup flow chart

Microcontroller inputs and outputs 93

A delay for the LCD might look like this...

DELAY PSHY Push Y on stack
LDY #3$1000 Load Y with delay time
DELOOP DEY Decrement Y
BNE DELOOP Check If Time=0if not 0 then do again
PULY Pull Y from stack
RTS
DH_AY
Push'Y
Load Y with
1000000000000000
DELOOP Decrement Y
No
Yes
Push'Y
Figure5.21

Delay for LCD flow chart

A check of the LCD register to seeif it is busy could look like this.

LCDBUSY LDAA $8000 Get LCD register data
ANDA #$80 Check if bit 7isal
CMPA #$80 Compare A for bit 7
BEQ LCDBUSY Ifitisloopto LCDBUSY

RTS Return if not busy

94 Practical Embedded Controllers

5.8.2

Figure5.22
Check if LCD is busy flow chart

Writing to the LCD

LCDBUSY

Load A with wha
isin LCD Regger

y

AND A with
10000000

To write to the LCD, the programmer might place the data to be sent in a message area.
When the data was to be sent, the data would then be reclaimed and sent to the LCD.

DISPLAY PSHB
LDX
LDAB
LOOP JSR
LDAA $00,X
STAA
INX
DECB
BNE
END PULB
RTS

DATA FCC

#DATA
#3$10
LCDBUSY

$8001

LOOP

‘—HELLO —*

Push B on the stack

Points to message to be displayed
Load B counter with 16 characters
LCD Check (see above)

Loads A with first byte from DATA
Store the character in LCD
Increment character

Decrement B counter

If not done displaying then loop
Pull B from the stack

Return

Thisisthe 16 characters message

5.9

Microcontroller inputs and outputs 95

DISFLAY
Push Bon to the Put cherecter in
Sack LCD ($8001)
Point to message Decremert the
aea(DATA) court (B)

Load Bwith $10 Done with 16
(16 count) Charecters
LOOP | Chex if LCD
Busy
Load Awith D
Charecter in X
RTS

—

Figure5.23
LCD display flow chart

Conclusion

Without digital and analog inputs and outputs the microcontroller has little use. By
receiving data in the form of digital 1s and Os the microcontroller is able to read switches
in the real world. These switches tell the microcontroller that some event has occurred.
This event could be just about anything and as far as the microcontroller is concerned it is
just an event. It is up to the software to interpret that event into a situation that the user
can understand. Analog inputs are voltage measurements of inputs from sensors. These
analog input values from the sensors are sampled at some resolution and then stored in a
database. The database is used by the upper level software and is shown to the user as
graphs, charts and on alphanumeric displays. The digital outputs are used to turn things
on and off. Before computers, almost all control was done using on or off signals. This
tradition has continued with microcontrollers. In the early days of digital electronics it
was assumed that in the future most control would be digital to analog. Instead digital
control continues today and probably will be the main method for controlling devices in
the future.

Keypad and LCD display systems are the two examples of interfacing to a
microcontroller. The keypad used in this example was a 12 key unit with 0 to 9 and # and
*_ The# and * are used in programs for functions like redisplay menu and return to top of
program. It is not uncommon to connect a 16 key keypad and even full size keyboards to
microcontrollers. These input devices let the user input data and make decisions for the
microcontroller. LCD displays are used to show information to the user in an easy and
clear manner. There are some little tricks to interfacing the LCD to the microcontroller
but once the programmer becomes familiar with the LCD they become easy to interface.

6.1

Data communications

Objectives

When you have completed this chapter you will be able to:

o Explain the three basic parts of a data communication system

o Describe the open system interconnection model

o Describe the three modes of communication

o Describe the four types of bus systems

o Describe the difference between RS-232 and RS-485

o Explain serial communications between microcontrollers

o Explain fieldbus systems and how they relate to microcontrollers

Introduction to data communication

In troubleshooting and design of microcontroller equipment it is important to understand
some of the basics and the main functions of data communications systems. Data
communication systems have become a required part of the overall controller system. In
some ways data communications has changed little in the last thirty years. We are still
moving serial data with changing voltages or currents on copper wires. In other ways it
has changed a lot, such as the advent of fiber optics and infrared. Thirty years from now
we will probably be doing data communications completely different than we do it today.
At the end of the day data communications can be thought of as two tin cans and a
piece of string. To the programmer the data communications system may seem invisible.
The programmer creates the packet and then sendsit to the data port. What happens to the
data after that is not usually the programmer’s concern? In the past speed, distance and
noise have limited serial data communications. This is slowly changing due to better
electronics and the industry wide move to fiber optics as a transmission medium. Speeds
of 100 Mbs and higher are now common and soon gigabyte speeds will become standard.
With the old RS-232 voltage standard, we were limited to distances of 50 meters or so,
but with the advent of the RS-485 voltage standard two kilometers were possible. Now

6.2

6.2.1

Data communications 97

with fiber optic data communications, tens and even hundreds of kilometers are possible
without repeaters. Because noise does not affect fiber optic cable, we now have systems
that are ideal for sending high-speed long distance digital information.

Figure6.1
Two tin cans and a piece of string

Basics of serial data communication

History of serial data communications

It is not the purpose of this book to spend a lot of time on the history of data
communications, but it is important to understand today’s data communication systems.
And sometimes it makesit is easier to understand the systems of today by knowing where
they came from.

The first electric data communication system was the telegraph system. It had all the
components that we have in modern data communication systems. The key transmitted
the data, the sounder (arelay connected to a metal tin) was the receiver and the wire that
connected the two together carried the data. The language that was used to send the data
was Morse code. The protocol (rules for sending the data) was similar to the one used in
Ethernet. The problem with the telegraph system was the speed and the human
component. People can send and receive only so fast using a key and if no one was there
to receive the data, it wasn't received.

Remote End : Remote End
A ! A
|
|
|
Sounder ! Sounder
|
|

= ¢ ==

Figure6.2
Telegraph system

To overcome the human and speed problem, devices were invented such as the
teleprinter and then the teletype. One problem with using a machine to send data is that
the old Morse code didn’t work very well. Morse code has a different number of bits for
different characters. A machine requires the same number of ‘bits' for each character. The
Baudot code was developed for teletypes because it had five bits (and a shift function) for
each character. When computers were invented in the sixties and seventies it was found

98 Practical Embedded Controllers

6.2.2

6.2.2.1

that the Baudot code was too limiting because it only had 62 characters and therefore a
new code was needed. ASCII became the dominant code for computers. It has up to 256
characters with a 128 basic set and another 128 extended set. The need of connecting
computers together with some type of data communication system led to the development
of systems like Ethernet and then the World Wide Web.

Three parts of data communications

There are three basic parts to every data communication system. They are the code, the
voltage standard and the protocol:

e Codes Morse — Baudot — Hex — ASCI|
¢ voltage standards RS-232 — RS-422 — RS-485 — Ethernet
e Protocols Modbus — Profibus — DeviceNet — Ethernet

Notice that Ethernet is both a voltage standard and protocol. It is fairly rare that a
protocol defines its own voltage standard. The protocol may or may not define a code and
voltage standard. For example Modbus defines two versions (Modbus A and Modbus B)
where Modbus A uses ASCII and Modbus B uses hex as a code. Neither Modbus A nor B
defines a particular voltage standard. This means that a design of a Modbus system can
use any voltage standard. Profibus FMS for example defines RS-485 as the voltage
standard and ASCI| as the language.

Code standards

The most common code used in data acquisition systems in the eighties was hexadecimal .
Because data rates increased and the users needed to send more data, designers changed
to the ASCII code in the nineties. These higher speeds negated the fact that ASCII uses
twice as many bits as hex for the same character. The advantage of ASCII is that more
letters or characters can be sent than when using the hexadecima code. For example
ASCII has all the letters, numbers and punctuation that might be needed to send the serial
number of a device. The problem with ASCII is that it is an English code and the world
speaks hundreds of languages. With the advent of the WWW it is becoming increasingly
important to have a code that all people can use. To this end the ITU universal code was
developed and probably will become the excepted standard code in the future. The
universal code has 65536 characters.

HEX 0 1 2 3 4 5 5 7

HEX BIN 000 001 010 011 100 101 110 1
0 0000 [(NUL) | (DLE) Space 0 @ P i p
1 0001 |(SOH) | (DC1 ! 1 A Q a q
2 0010_|(5TX | (DC2) “ 2 B R b r
3 0011 |(ETX | (DCH) # 3 C s c s
4 0100 [(EOTy | (DC4) 5 4 D T d t
5 0101 | (ENQ) | (NAK) % 5 E] e u
8 0110 [(ACK) | (SYN) & 5 F v f v
7 0111 |(BEL) | (ETB) 7 G Q g w
8 1000 _| (BS) {CAN) { 8 H X h x
B 1001 | (HD (EM)) 9 I ¥ i y
A 1010 _|(LF) (SUB) + : J z f z
B 1011_|(VT) (ESC) + : K [k {
c 1100 | (FP)) P L \ | |
D 1101 | (CR) ({GS) = M] m }
E 1110 | (50) (RS) _ > N A n ~

F 1111 | (5D us) / ? 0 o DEL

Table6.1
The ASCI| table

6.2.2.2

6.2.2.3

Data communications 99

Voltage standards

Voltage standards changed little until the microchip revolution. When the transistorized
differential amplifier was developed, the range and speed of data communication
increased tremendously. RS-232 uses a single ended grounded method that is very
susceptible to noise and this limits its speed and distance. RS-422 and RS-485 use a
differential system that is more resistant to noise and therefore can send data faster and
further.

Voltage standards can be divided up into two types, voltage standards like ITU, IEEE
and EIA and semi-standards like RS-232 and RS-485. A few protocols have developed
their own voltage protocols but most use a standard or semi-standard voltage standard.
Often the question is asked ‘why we don’t use standard voltage systems and instead use
semi-voltage standards like RS-4857 This is usually because true standards are often
either very limiting or have very little relation to real life. A good example of thisis the
ElA-422 standard. The true textbook RS-422 voltage standard is almost unrecognizable
and unusable when compared to RS-422.

1200M (4000 FT)

/— TERMIMATION RESISTORS AT BOTH ENDS ONLV—\\
in a2

- Generatar

- Receiver

G

R

l - Circuit ground or
- circuit common

- Protective ground or

frarme ground

GWG - Greenwire ground or
power system ground

oH5 ke

ficte.: The R5-453 standard docun emtation
leaves out the invedes for dre reosiver

Figure 6.3
RS-485 system

Protocols

Protocols have gone a long way towards standardizing data communication systems, but
having said this, there are hundreds of protocols available. There are those in industry that
would like to see one protocol for all data communications. This would be like having
one language for the whole world. The alternative is to have a universal trandator that
can change one protocol to another. There are software programs that do this now. For
example the program Citect has multiple device drivers that allow many different
protocolsto be used on one system. The protocols are all trandated at the software level.

100 Practical Embedded Controllers

6.3

_Edit Operate Controls ﬂinduwd

[=>

_Edit Operate Functions Mindow

Eh [[x] (AlR[#] Ll [BIEh] (AR
GRA&PH|
10.0

METER] [GReeH
[oBL)] [08L]

alhla 1 4

Mk |I| L ML I " ||| Lh
! \ ih |l

Y '.||r ¥ ||1| Y Il..-'lll If||| '..'| ||.'II

METER

2p 4060 g4

0.0 /)T—\m_n

KMOB1 KNOB2
4.0

6.0 .
EMNDB2Z]
2.0@)3.0 2.uﬁ)a.n
(1} 1000 .

0
y g
:IE-?E w24

Figure 6.4
Citect software system

In the area of data acquisition and control systems protocols can be divided into two
camps, open standard protocols and proprietary protocols. An example of an open non-
proprietary standard protocol could be Profibus or Foundation Fieldbus. These standards
do not belong to any manufacturer but are open standards that anyone can use. Protocols
like Allen Bradleys Data Highway Plus or Seimens SP-5 are proprietary protocols. These
protocols are owned and maintained by their manufactures and are part of a complete
system that they sell. The obvious problem with using these proprietary protocols is that
the customer is locked into the complete system and one manufacturer. With the open
standard protocols the user can buy the hardware from any manufacturer and even have
multiple protocols running in the same system. The open protocols (and therefore the
controllers) can be tied together with an open proprietary software package like Citect,
Wonder Ware or Intelution. These software programs use the application and datalink
layers of the OSl model.

Open system interconnection model

The OSI model is the International Standards Interconnection model. This model
describes a working data communication system in the form of different layers. The
model helps us understand the overall functions of each part of a data communication
system and how they interact with each other. In Figure 6.5 the application layer is at the
top with the physical layer at the bottom. From the datalink layer up the first five layers
are software. The physical layer and half of the datalink layer are hardware. The datalink
layer usually is a combination of both software (device drivers) and physical hardware
(the communication port in the controller).

6.3.1

Rcal World

Application

A Virtual Connections A

Real World

Presentation l

\

Peer to Peer

i

Application

Session

Relationships

Presentation

Session

Transport

Network

Transport

Data Link

Network

Data Link

Physical \

I

Physical

f

Communications Medium

Figure 6.5
OS model

Application layer

Data communications 101

The application layer is the upper layer software application that could include
information that would be used to develop software programs like Citect and Wonder
Ware. The application layer has physical communications with the layers below it while
at the same time it has a logical communication with the application layer on the
receiving device. This means that the application layer talks to the layer below it as
though it was talking to the application layer on the other end. In the same way that a
caller talks to the person on the other end of the telephone line as though the telephone
didn’t exist. We talk to the person not the telephone.

(22 @ H QO /¥+~ 00O & |

File Edit View Arange Test Line Special Windows: Help
T
DA) 5 &
h 27y [Ass= J5ATE
« BWindows ||
+ Scripts
+ Wy Configure 000 4 —
Eagna;’ef[’ 200
ross hefern
B. Templatehdd 60.0
| Applications 400
200
0.0
Slider
‘ v
t OB & é
Ready X0 a0

Figure 6.6
Wonder Ware example

102 Practical Embedded Controllers

6.3.2

6.3.3

6.3.4

Session, presentation, transport and network layers

All layers in the OSI model have their own functions, athough in some systems the
layers are combined. Often in controller communications some layers are not used.
The reason for thisis asfollows:

e Thesession layer is not used because this function is usually contained in the
datalink layer (session overheads)

e The presentation layer is not used because encryption and compression
are rarely needed

e Thetransport layer is not usually used because microcontrollers rarely
communicate with other networks. They usually stay within one network and
if they do connect to other networks they would use another protocol like
Ethernet

e The network layer is not used because since the data stays in one network it
does not need an intra-netting or inter-netting addressing system like IP or
IPX. Again if the data is going between different networks, Ethernet or some
other protocol isusually used

Datalink layer

The bulk of what makes up a protocol lives within the datalink layer of the seven-layer
model. The datalink layer is divided into separate layers, the logical link control layer
and the media access control layer.

The logical link control layer is the software (or firmware) side of the datalink layer.
This layer is where the program that creates the communications in the controller resides.
The logical link control layer may consist of alow level device driver in a computer or a
subroutine in the microcontroller that interfaces the application layer to the media access
layer in either a card or module.

The media access layer is the hardware layer in the controller or card in the computer
that accesses the physical media. This could be a UART (universal asynchronous receiver
transmitter) within the controller or an RS-232 card in the computer. In synchronous
systems a USART (universal synchronous asynchronous receiver transmitter) could be
used. These chip sets vary greatly and depending on the protocol and physical layer used
the designer might use a synchronous or asynchronous system.

Physical layer

The physical layer of the OSI model can consist of cards, modules and the wire of the
system. The voltage standard resides within the physical layer although the physical
system could be either a current or light transmission system. The physical layer can
include driver chips, repeaters, connectors and wire. The physical system determines the
speed of the data, the distance and the number of devices that can be connected together.
The RS and EIA-232, 422 and 485 standards are combinations of components made up of
the media access layer and the physical layer with emphasis on the physical layer. Often a
software programmer might see the physical layer as just a pipe or two tin cans and a
piece of string. They write the program without regard to what kind of physical layer is
going to be attached. They just dump the data into the media access layer via the logical
link layer and let the hardware engineer deal with it.

6.3.5

6.4

6.4.1

6.4.2

Data communications 103

Protocols and the three layer model

As we can see from the previous pages the seven-layer model has becomes a three-layer
model with the application layer, datalink layer and the physical layer as the main
components. The protocol of acontrol system is mostly a datalink commaodity with access
to the upper application layer and lower physical layer through something called *‘ service
access points'. These service access points are usually a small software interface (like a
device driver) between the different layers of the OSI model. Some protocols like
Ethernet or Profibus include a physical layer in the protocol. Whereas others like Modbus
provide only a datalink and a bit of application layer. Neither of these examples includes
a true application layer. This would be too limiting for the designer. It would be
ridiculous to have a system where only one application is allowed to access Ethernet,
Profibus or Modbus. Consequently all open protocols have a datalink layer, some have a
dedicated physical layer but none have a dedicated application layer.

Modes of communications

Data communications in general has three modes, simplex, half-duplex and full-duplex.

Simplex

Simplex is used when it is not necessary to get any information back from the receiver.
The transmitter sends out data, but nothing can come back. It is a one way
communications system. Simplex is rarely used because we amost always need
information back from the receiver.

| } Simplex : |
’ B :
| . 1 .
| Transmitter ‘ . Receiver .
: 1 : |
1 | 1 1

Figure6.7

Smplex mode

Half-duplex

Half-duplex is the most common communication mode in use today. The transmitter
sends data to the receiver and then the receiver answers back with an acknowledgment or
other data. This method often uses a two wire multidrop system like RS-485 but can be
used with three wire (RS-232) or four wire (RS-422) point-to-point systems. Ethernet and
fieldbus systems aso use half-duplex. It is used in aimost all master/slave, CSMA and
Tokenbus systems. This half-duplex system is simple and easy to control. Because in a
half-duplex system only one device is supposed to be on the line at atime, the chances of
two or more devices conflicting with each other are minimized.

104 Practical Embedded Controllers

6.4.3

6.4.4

| _ | Half-Duplex ! _ |
i Transmitter —L :)f Receiver i
i Receiver H « L] Transmitter E

Figure6.8
Half-duplex mode

Full-duplex

Full-duplex is rarely used by communication systems because of the difficulty in
controlling the conversation. In true full-duplex communications both the transmitter and
receiver would be able to talk at the same time. This is fine if only two devices are
connected together, but when three or more are multidropped full-duplex becomes very
difficult, if not impossible. The good thing is that with very fast half-duplex systems like
Ethernet, from the user point of view, the system appears to be working in full-duplex.

------------------- Full-Duplex P

Transmitter Receiver

Receiver Transmitter

|

Figure6.9
Full-duplex mode

The master slave bus

The master dave bus system is a very common method of doing multi-drop
communication. Master/slave protocol rules state that the master can talk to one or more
slave but the slaves can only talk back to the master. The slaves are not allowed to talk to
each other. This communication is typicaly done half-duplex. The master/dave
communication system uses a polling method. The master sends out a poll to the slave
and then the slave responds with either data or an acknowledgment. The master polls al
of the dlaves one at atime in around robin method. The poll goes on forever or until the
user stops it to talk directly to a slave via the software. The system is very deterministic
because the programmer or the user can determine which device talks and when.

6.4.5

Data communications 105

A

PC

Master

Slave 1 Slave 2 Slave 3
Figure 6.10
Master slave diagram

The master/slave system is very popular because of its simplicity and determinism.
Programmers like the master slave system because it is easy to write and control. It fits
nicely within sequential programming methods. Fieldbus users like the master/dave
system because it is easy to understand and all the devices on the system are continually
checked. The users also have a lot of control over what device communicates and when.
The down side of the master/slave system is the time it takes to do a complete poll. If a
device is polled and then goes into an alarm situation, the master and therefore the user
will not hear about it until the master gets around to it on the next poll. A typical example
of the master/dave system is Modbus.

The CSMA/CD bus

CSMA/CD stands for carrier sense multiple access with collision detection. Carrier sense
means that the devices (nodes) that are connected on the multidrop system listen to the
line and if another device is transmitting it has to wait. The multiple access means that
any node can talk aslong as no one elseis on the line. There is no master or slavesin this
system, only nodes. The collision detection is the method the system uses to recover
when two or more devices try to access the line at the same time. The advantage of the
CSMA/CD system is that any node can talk whenever it wants. At low traffic level this
system works very well. The most common CSMA/CD system is the Ethernet system.
The problem with CSMA/CD systems is when the traffic reaches critical levels (30%) the
system stops running and must be reset. This can be catastrophic in an industrial
controller system.

[T
=

Node 1 Node 2 Node 3 Node 4

Figure 6.11
Ethernet (CSMA/CD)

106 Practical Embedded Controllers

6.4.6

6.4.7

The token bus system

Token busis avery popular communication system that connects multiple nodes together
on one system. The main rule of atoken bus system is that any node can talk to any other
node as long as it has the token (a short packet that everyone sees as the token). The token
bus system must have a pseudo-master. One of the functions of the pseudo-master is to
create the token and send it to the first node. That node then can talk to any other node
while it has the token. When the node is done sending data or its time is up, it must send
the token to the next. The token is passed around the system from one node to another
until it returns to the pseudo-master. Token bus is very popular because it has most of the
advantages of both the master/slave and the CSMA/CD systems. It is deterministic and
yet any node can talk to any other node. The biggest disadvantage of this system isthat a
node has to have the token to talk and must wait until it comes around. Often in a token
bus system more than one node can be the pseudo-master, but only one device can act as
the pseudo-master at a time. This means that if the pseudo-master is disconnected,
another node can take over control. Profibus is one of the most popular non-proprietary
open token bus communication protocols on the market today.

Pseudo- < Token Token ™ ~Token ™4
Master
+
Node 1 Node 2 Node 3 Node 4
Figure 6.12

Profibus (token bus)

Timed systems

Timed communication systems are the fastest data transfer systems on the market at the
moment. With a timed system the link active scheduler (LAS) creates a packet where
each node is allocated a portion of time for its information. Thisis sent to the nodes and
then the nodes respond in time to the LAS. The LAS determines who talks and how long.
For example the USB communication system on your computer may only need data from
the keyboard every 100 milliseconds or so but on the other hand it may need information
from the CD player more often. The LAS would configure the system so that the CD
player talks more often and the keyboard less often. The good thing about timed system is
that it is very fast and the data to overhead ratio in the packet is extremely good. One
problem with timed systems is that they rely on a master LAS and if the master dies the
system stops.

6.5

6.5.1

Data communications 107

{'—> Thef'l |'/—>
e /
/ !
Hub PC
Node 1
Pseudo-
master
Node 2 Node 3 Node 4

Figure6.13

USB (timed)

RS-232

Introduction to RS-232

RS-232 is often used to communicate from the PC to a controller. It is an easy and ssimple
asynchronous communication system. One of the confusion factors with RS-232 is that
there are two versions, EIA and RS. The system was developed in the sixties and
submitted to |EEE by Bell Labs. Unfortunately it was not accepted and from then on was
known as RS-232 (Recommended Standard 232). The 232 isjust a number IEEE given to
it during the acceptance process.

The voltage levels of RS-232 (we will be discussing RS and not EIA here) are well
known as +25 volts to —25 volts with an undetermined area of +3 volts to —3 volts. This
means that if a voltage between +3 volts and —3 volts is received the UART (universal
asynchronous receiver transmitter) will not be able to determineif itisa 1 or 0. Theidle
voltage of RS-232 isaminus voltage and is usually represented by a 1, although different
systems represent it differently. A positive voltage usually is seen as a zero. RS-232 uses
athree-wire transmission method where the transmission and receiver lines are referenced
to a common ground. This makes it very susceptible to noise from the ground or from
outside signals. Usually we do not run RS-232 more than 50 feet, but this varies
depending on the speed of the transmission and the amount of noise in the area.

Od_d
Start Data Pal_‘lty
Bit LSB)) MSB Bit
+12V 0 0 5 . - - Stop
Bit
Idle 1 1 1 1 Idle State
12V
State -
ASCII for 'F
Figure6.14

RS-232 character transfer

108 Practical Embedded Controllers

6.5.2

6.5.3

A common confusion factor in RS-232 is the use of the 9 lines. RS-232 is not a protocol
it is a voltage standard. RS-232 tells what the lines are, but not how to use them. There
are as many ways to use the lines, as there are line combinations. There are three main
types of linesin RS-232.

Function of the lines

Indicator lines (RI, CD, DTR and DSR)
Control lines (RTSand CTS)
Transmission lines (TX, RX and C)

RS232 Pinout on DB25

2 Transmit Data (TxD)
3 Receive Data (RxD)
7 Signal Ground

4 Request to Send (RTS)
5 Cleartosend (CTS)

6 Dataset ready (DSR)
20 Data Terminal Ready (DTR)

8 Data Carrier Detect (DCD)

http://www.sangoma.com/default.htm

Figure 6.15
RS-232 pin outs

It isimportant to remember that in RS-232 the lines are one-way lines. There are no bi-
directiona lines in RS-232. The ring indicator line only goes from the DCE to the DTE.
The DTE is the data terminal equipment. The key word here is terminal. It comes from
the Latin for the end of something, like train terminal. The terminal in this case is the
computer, controller or PLC to name a few. The DCE is the data communication
equipment. This originally was the equipment in the telephone exchange where the
modems were located. That iswhy al modems are configured as DCEs.

RS-232 installation and troubleshooting

Since RS-232 is a point-to-point system installation is straightforward and simple. All
RS-232 equipment use either db9 or db25 connectors. These connectors are used because
they are cheap and alow multiple insertions and disconnections. None of the 232
standards define what device uses a male or female, but traditionally the male pin
connector is used on DTE (terminal) and the female socket connector is used on DTE
(modem) equipment. Thisis only traditional and it may vary on different equipment. It is
often asked why use a 25-pin connector when only 9 pins are needed on RS-232? This

Data communications 109

was done because RS-232 was used before computers and therefore used hardware
control (RTS/ CTS). It was originally thought that in the future we might need more
hardware control lines, hence the need for more pins.

1 |......ChassisGround] 1
2 Transmit Data (TxD) » 2
3 leg Received Data (RxD) 3
4 Request to Send (RTS) » 4
5 |l Clearto Send (CTS) 5
6 |a Data Set Ready (DSR) 6
7 Signal Ground (Common) 7
8 le Data Carrier Detect (DCD) 8
20 Data Terminal Ready (DTR) w 20
22 ¢ Ring Indicator {(Rl) 22
Data Signal Rate Selector (DSRS) 23
{not supported by most PCs)
Microcomputer Modem
DTE DCE
Figure 6.16
RS-232 lines

When doing an initial installation of an RS-232 connection it is important to note the
following specifications:

Is one device aDTE and the other a DCE?

What sex and size of connectors are located at each end?
What speed is the communi cations?

What is the distance between the equipment?

To determine whether the devices are DTE or DCE, connect a breakout box at one end
and note the TX light (pin 2 or 3) on the box. If it is on pin 2, the device is probably a
DTE. If it is on pin 3 it is probably a DCE. Another clue could be the sex of the
connector, male DTE or femae DCE, but not always.

The speed and distance of the equipment will determine if it is possible to make the
connection at all. Most engineers try to stay less than 50 feet or about 16 meters at
115 kbs. Thisis a very subjective measurement and will depend on the cable, voltage of
the transmitter and the amount and noise in the environment. The transmitter voltage can
be measured a each end when the cable has been installed. A voltage of at least
+ /-5 volts should be measured at each end on both the TX and RX lines.

110 Practical Embedded Controllers

Figure6.17
Measuring the voltage on RS-232

Once it has been determined that the communication is connected as DTE to DCE and
that the distance and speed are not going to be a problem, the cable can be connected at
each end. The breakout box can still be left connected with the cable and both pin 2 and 3
lights on the breakout box should now be on.

The color of the light depends on the breakout box. Some breakout boxes use red for a
one and others use green for aone.

If only one light is on then that may mean that a wire is broken or there is a DTE to
DTE connection. A clue that a DTE to DTE connection has been made would be that the
light on pin 3 would be off and the one on pin 2 would be on. To correct this problem first
check the wires for continuity, then turn pins 2 and 3 off on the breakout box and use
jumper wires to swap them. If the TX and RX lights come on, a null modem cable or box
will need to be built and inserted in-line with the cable.

Once the cable has been connected correctly, try the communication and see if it works.
It might be prudent at this point to see if data is being sent, by looking at pin 2 on the
breakout box. Be careful here because it is possible that the data is being transmitted so
fast that the light on the breakout box doesn’t have time to change. If it is possible, lower
the speed of the communication at both ends to something like 1200 bps. If one device is
transmitting but the other receiver is not responding then the next thing to look for is what
type of control the devices are using. The equipment manual may define whether
hardware or software control is being used. Both ends should be set up for hardware
control, software control or none.

6.6

6.6.1

Data communications 111

Figure6.18
RS-232 breakout box

If pin 2 and pin 3 lights are on, one end is transmitting and the control is correct, then
the only thing left is the protocol. Either a hardware or software protocol analyzer will be
needed to troubleshoot the communications between the devices. On new installations
one common problem is mismatched baud rates. The protocol analyzer will tell exactly
what the baud rates are for each device. Another thing to look for with the analyzer is the
timing. Often the transmitter waits some time before expecting a proper response from
the receiver. If the receiver takes too long to respond or the response is incorrect, the
transmitter will ‘timeout’. Thisis usually denoted as a ‘ communications error.’

RS-485

Introduction to RS-485

RS-485 is the most common voltage standard in use today for multidrop
communication systems. Thisis because of the following:

It isvery resistant to noise

It can send data at high speeds (up to 10 Mbs)

It can be run for long distances (5 km at 1200 bps, 1 km at 9600 bps)
It iseasy and cheap to use.

The RS-485 chips are differential chips. This means that the two TX and RX wires are
referenced to each other. A one is when one of the lines is +5 volts and the other is
ground. A zero is when the lines reverse and the line that was + 5 volts is now ground
(O volts) and the line that was ground is now +5 volts. In working systems the voltages
are usually somewhere around +/-2 volts with reference to each other. The indeterminate
voltage levels are +/-200 mV. Up to 32 devices (TX/RX) can be connected on one
system without a repeater. Some systems allow the connection of five legs with four
repeaters and get 160 devices on one system. There are chips now being manufactured
that can connect up to 256 devices on one pair of wires with no repeaters.

112 Practical Embedded Controllers

6.6.2

araoap
DS75176BN

Figure 6.19
RS-485 chip

Resistors are sometimes used on RS-485 systems to reduce noise, common mode
voltages and reflections. Using bias resistors of values from 1k0 to 4k7 can sometimes
reduce noise. These resistors are connected from each line to + 5 volts. Higher voltages
should not be used because anything over +12 volts will cause the system to fail.
Unfortunately sometimes these resistors can increase the noise on the system by allowing
a better path for noise from the ground. It is best not to use bias resistors unless required
by the manufacturer.

Common mode voltage resistors usually have a value between 100 k and 200 k ohms.
The values will depend on the induced voltages on the lines. They should be equal and as
high as possible and placed on both lines and connected to ground. The common mode
voltages should be kept less then +7 volts, measured from each line to ground. Again,
sometimes these resistors can increase the noise on the system by allowing a better path
for noise from the ground. It is best not to use common mode resistors unless required by
the manufacturer or as needed.

The termination resistor value depends on the manufacturer and will be between 60 and
220 ohms. This resistor is placed between the lines and reduces reflections on short and
high-speed lines. If the lines are more then 100 meters long and speeds are 9600 or less
the termination resistor usually becomes redundant, but having said that, you should
always follow the manufacturers' recommendations.

RS-485 vs RS-422

In practice RS-485 and RS-422 are very similar to each other. In practice manufacturers
often use the same chips for both. The main working difference is that RS-485 is used for
2 wire multidrop half-duplex systems and RS-422 is 4-wire point to point full-duplex
systems. Manufacturers often use a chip like the 75154 with two RS-485 drivers on
board as an RS-422 driver. One driver is used as a transmitter and the other is dedicated
as areceiver. Because the RS-485 chips have three states, TX, RX and high impedance,
the driver that is used as a transmitter can be set to high impedance mode when the driver
is not transmitting data. This is often done using the RTS line from the RS-232 port.
When the RTS goes high (+ voltage) the transmitter is effectively turned off by putting
the transmitter in the high impedance mode. The receiver is left on all the time, so data
can be received when it comes in. This method can reduce noise on the line by having a
minimum of deviceson theline at atime.

6.6.3

Data communications 113

RS-485 installation and troubleshooting

Installation rules for RS-485 vary per manufacturer and since there are no standard
connectors for RS-485 systems, it is difficult to define a standard installation procedure.
Even so, most manufacturer procedures are similar. The most common type of connector
used on most RS-485 systems is either a one part or two part screw connector. The
preferred connector is the 2-part screw connector with the sliding box under the screw
(phoenix type). Other connectors use a screw on top of a folding tab. Manufacturers
sometimes use the db9 connector instead of a screw connector to save money.
Unfortunately the db9 connector has problems when used for multidrop connections. The
problem is that the db9 connectors are designed so that only one wire can be inserted per
pin. RS-485 multidrop systems require the connection of two wires so that the wire can
continue down the line to the next device. This is a simple matter with screw connectors,
but it is not so easy with a db9 connector. With a screw connector the two wires are
twisted together and inserted in the connector under the screw. The screw is then
tightened down and the connection is made. With the db9 connector the two wires must
be soldered together with a third wire. The third wire is then soldered to the single pin on
the connector.

Note: When using screw connectors the wires should NOT be soldered together. Either
the wires should be just twisted together or a special crimp ferrule should be used to
connect the wires before they are inserted in the screw connector.

Figure 6.20
Bad RS-485 connection

Serious trouble with RS-485 systems israre (that is one reason it is used). Four possible
problems can arise in the installation process:

The wires are reversed (black to white and white to black)

L oose connections due to improper installation. (See Figure 6.20)
Excessive electrical or electronic noise in the environment
Reflection of the signal

114 Practical Embedded Controllers

6.7

To make sure the wires are not reversed, check that the same color is connected to the
same pin on all connectors. Check the manufacturer’s manual for proper wire color codes.

Verifying that the installers are informed of the proper installation procedures can
reduce loose connections. If the installers are provided with adjustable torgque
screwdrivers then the chances of loose or over tightened screw connections can be
minimized.

Excessive noise is often due to the close proximity of power cables or signa wires.
Another possible noise problem could be caused by an incorrectly installed grounding
system for the cable shield. Instalation standards should be followed when the RS-485
pairs are installed close to other wires and cables. Some manufacturers suggest biasing
resistors to limit noise on the line while others dissuade the use of bias resistors
completely. Again the procedure is to follow the manufacturer’s recommendations.
Having said that, | have found that biasing resistors are of minimal value, and that there
are much better methods of reducing noise in an RS-485 system. Often common mode
voltage resistors are used to reduce noise. The value of the common mode voltage
resistorsis often from 100 k to 200 k ohms.

Note: When using bias resistors neither the A— nor the B+ line on the RS-485 system
should ever be raised higher than +7 volts or lower than -5 volts. Most RS-485 driver
chipswill fail if this happens.

A termination resistor of 60 to 220 ohms is used to reduce reflections on the line. This
is more important at higher speeds and shorter distances. Again it is important to follow
the manufacturer’ s recommendations for the value or whether it is needed at all.

Fiber optic cables

Fiber optic communication systems are becoming more popular every day. This is
because as the quantity of electronic equipment increases the amount of radiated noise
increases. Therefore it makes sense to move to noise free fiber optic systems.
Communication on a fiber optic cable is done by turning on and off the light created by a
laser diode or LED. The light is sent down a glass fiber cable to alight sensitive receiver
at the other end. The receiver turns the pulses of light back into ones and zeros. This
serial communication can be done in either an asynchronous or synchronous manner.
Because the fiber optic cable is simply a pipe for the data, any protocol can be used to
send the data. RS-232 to fiber optic cable adapters are becoming very popular.

If an RS-232 system is too noisy, the person responsible could put together an RS-232
to fiber optic system with the following:

e Two RS-232 to fiber optic converters
o A length of fiber optic cable
o Four hot melt connectors.

A hot-melt connection unit is used to melt the connectors onto the end of the fiber optic
cable. The converter is then plugged in to the RS-232 port on each end. The cableis then
connected to the converter and the whole system becomes an invisible pipeline to the
transmitter and receiver. The reason there are four connectors needed is because there is
actually two fiber optic cables needed. One cableis for data in one direction and the other
cableisfor the other direction.

6.8

Data communications 115

Figure6.21
Fiber optic cable with hot melt connectors

The most common type of fiber optic cable used to connect industrial devicesis the zip
cable. The zip cable is a fiber optic cable with two fibers along side of each other. They
are loosely attached to each other. By pulling on both cables at the end, the two cables
can come apart very easily. The two cables are then hot melted into the connectors. Once
the connectors have cooled they are plugged into the controller.

Fieldbus protocols used in controllers

Fieldbus protocols have changed over the last decade from proprietary protocols such as

the Allen Bradleys Data High Plus system to open non-proprietary protocols like

Profibus. This change means that the user is no longer dependent on one manufacturer.
Some other open protocols used to communicate to controllers are:

e Modbus Master/slave No physical layer

e DNP3 Master/dave RS-232 or FSK

e CANBUS CSMA /BA No physical layer (RS-485)
e Profibus (FMS and DP) Token bus RS-485

e Profibus (PA version) Token bus 1158-2

e Interbus S Timed RS-485

e Foundation Fieldbus Timed 1158-2

116 Practical Embedded Controllers

6.9

Request Message
S | €2 | B | EE£| Y
2 | 88| E° | 22| ©
< [, -
Hi Lo |Hi Lo
01 01 000A | 00 02| 9D CH

Response Frame

2 | § -
& = 0 — U
= S8 | 52 & o
= EC | g | @A &
< =

(1 01 0l (3 Il 89

Figure 6.22
Typical Modbus packet

All of these protocols have their good and bad points and none of them would be
considered by the author as perfect. The selection by the user or designer really is done on
a case by case basis. For example if the system was going to be on wire and radio then
probably DNP3 would be the choice, but if only wire was going to be used and the
system was small probably Canbus or Modbus might be used. Larger industrial systems
would probably use Profibus or Foundation Fieldbus. The fastest data transfer system is
the Interbus S system.

Conclusion

Data communications is a very important and a useful part of microcontroller systems.
Controllers that communicate can reduce the largest cost in a factory, the labor.
Therefore, the real power in microcontrollers is in connecting them together. We have
seen in this chapter that the code, voltage standard and the protocols are the three basic
parts of any data communications system. We aso saw that the OSI seven-layer model is
important in helping us understand the different parts of a working communication
system. It aso was shown that the seven-layer model really doesn't work for
microcontrollers and that most often we use a simplified version of the three-layer model.
The application layer, datalink layer and the physical layers are the typical layers used by
most control systems.

Getting a little more specific, concerning voltage standards, we saw how the modes of
communications define the way we set up the overall system. With simplex, half-duplex
and full-duplex defining the main way we communicate. Using one of the four basic
types of fieldbus systems, master/slave, CSMA/CD, token bus and timed, modern
industrial data communication systems can communicate. It was also shown that different
communication systems have their good and bad points depending on needs of the
designer and/or user.

RS-232 and RS-485 were defined and shown as two very different but equally useful
voltage standards. RS-232 is used mainly when connecting only two controllers, but RS-

Data communications 117

485 is used when connecting multiple devices together. RS-232 is usually used when an
engineer or technician wants to program or communicate with a microcontroller directly.
We found that RS-232 is used mostly when the communication lines are short and the
data speeds are slow. Whereas RS-485 was seen as typically a multidrop, high speed and
long distance voltage standard. It was aso noted that the RS-485 voltage standard is very
immune to noise compared to RS-232. Fiber optics was also discussed and seen as the
communication standard of the future. Signal wire systems are quickly being replaced by
fiber optic cable systems.

Lastly we saw that there are a many fieldbus systems developed lately for
microcontroller communications. The movement to open fieldbuses is unstoppable and
will no doubt continue in the future. We saw that different open standard communication
fieldbuses are used for different situations.

At the moment serial data communication is used extensively as the only system to
connect devices at some distance. On the printed circuit board of course most
communications is done in parallel. These wires are short and protected from outside
noise. But in the not too distant future data communication may move to paralel
communication over medium to long distances using multiple frequency light on fiber
optic cables. In these systems the data will be sent with 8, 16 or 32 different colors of
light at atime. It is theoretically possible to send millions of colors at atime, at least for
short (2 km) distances. The future of data communications is in radio and light using
parallel communications.

7

7.1

Noise reduction

Objectives

When you have completed this chapter you will be able to:

¢ Define noise and how it affects a microcontroller circuit

¢ Explain the decibel and the signal to noiseratio

e Explain the difference between single ended and differential circuits in
relation to noise reduction

o Describe common mode voltages

o Describe the three ways to couple noise from one circuit to another

o Describe the four ways to reduce noise on a PCB

o Explain the function of a Faraday shield and its use

Introduction to noise reduction

Noiseisfact of life. Everyone that has children knows that noise is part of being a parent.
And like the noise that children bring into our lives, electronic noise is always present.
Electronic noise cannot be totally eliminated; it can only be reduced, hopefully to the
point that it does not cause us any problems with our signal. This chapter explains
electrical noise theory and practical ways to reduce it in our circuits.

Thisincludes:

e What is electronic noise?

e Sources of electronic noise

e Grounding on printed circuit boards
¢ Reduction of €ectronic noise

711

7.1.2

713

Noise reduction 119

Definition of Electronic Noise:
‘One man’s noise is another man’ssignal.’
Steve MacK ay

To understand electronic noise we must first look at the origins of electronics. In the
seventeen and eighteen hundreds a few physicists started out doing simple experiments
with permanent magnets, coils of wire and glass jars. These founding fathers of
electronics used common materials to demonstrate the physical properties of inductance,
capacitance and magnetism. Little did they know that those parlor tricks of filling jars
with electricity, moving magnetized needles with current through a coil of wire and
creating sparks in adjacent wires, were the building blocks of modern electronics. When
Marconi developed the first spark gap transmitter, he created not only radio but also what
we know today as wide band noise.

Noise can be loosely defined as any electric or electronic signal that interferes with my
signal. It may even be that some of my own signals are interfering with themselves. Noise
is usualy separated into two types, spikes or frequencies. Spikes are transient and
frequencies are usually constant. All electrical noise is created by the changing power of a
circuit. Rarely is DC voltage a noise component. Noise is a combination of both voltage
and current. And since noise is a relative manifestation, electronic equipment can be more
or less susceptible to noise. Electronic noise can be considered both a transmit and
receive problem. Many arguments have been born out of the disagreement over whether
the noise source is too strong or the noise receiver too sensitive. It is best therefore to
design equipment that produces as little electronic noise internally and filters external
electronic noises as much as possible. Maintenance of the noise that isleft in our circuit is
then a prime concern. The susceptibility of our equipment to this unavoidable electronic
noise that isleft in our circuit is the true test of good electronic design.

The decibel

To define how much electronic noise we are creating or want to eliminate, we must first
give it avaue of —20 dB. This value is known as the decibel. The decibel is a value that
represents the power of noise produced or received by a circuit. It is a unit based on the
ratio between the power into and the power out of the circuit.

Signal to noise ratio

The signal to noise ratio is the ratio of noise to our signal. Thisratio is used to show the
relationship of some external noise to our known good signal. The signal to noiseratio is
measured in decibels or dB. The signal to noise ratio may be defined within some
bandwidth and/or center frequency. This is because the signal to noise ratios may change
outside of a bandwidth, or away from a particular center frequency. It is easy to see how
that if the voltage on the line is +5 volts and there is a'so +0.05 volts of noise on the line
then the signal to noiseratio is 100:1. Thiswould be a value of minus 100 dB.

Sources of noise — internal vs external

Electronic noise source can be divided up into two areas, interna created and externally
received. Internal noise sources are electronic noise sources that originate within the same
electronic device that is experiencing the noise. This noise usualy is discovered when the
equipment isfirst turned on. It is rare that a piece of equipment develops an internal noise
problem after being in use for some time. Interna noise can develop when a component

120 Practical Embedded Controllers

within the equipment becomes defective. This problem is unusual on newer digital
equipment, as digital chips either work or they don't.

Figure7.1
Dead chip
External noise sources usually are transmitted to our circuit by way of some wire. The
many wires that connect different equipment can be thought of as radio antennae. The
closer the wires, and the longer they lay next to each other, the greater the noise is
transmitted to our circuit. It is important then in noise reduction to keep and or move the
wires that are transmitting noise away from the wires that are connected to our
equipment.
The ratio of noise transmitted from awire to our circuit is determined by the following:
e The size and type of wire used in both circuits
¢ The strength of the transmitted signal
o The susceptibility of the receiver to the noise
¢ The distance between the wires
¢ The length they run paralel
e Thetype of circuits (single-ended vs differential)

Figure7.2
Wiresin parallel

7.1.4

715

Noise reduction 121

Single ended or grounded circuits

Every piece of electronic equipment is a noise-receiving device. Even aresistor sitting on
a table is receiving electronic noise. It is important then in the development of a noise
reduction system to understand how noise is received. There are basically two different
types of noise receiver circuits. There is the differential or floating receiver and then there
is the single ended or grounded receiver circuit. Each of these types of circuits has a
different reaction to electronic noise. The single ended circuit is easier to use, but is more
susceptible to noise. The differential receiver is less susceptible to noise, but it has
common mode voltage problems.

By definition, a voltage is a measurement of the potential difference between two
points. Grounded signal sources or receivers have one of their signal lines connected to
the system ground as shown in Figure 7.3. This is theoretically shown as earth potential,
although the system ground is not necessarily at earth potential. The voltage from the
signal receiver isthe potentia difference between the system ground and the signal.

Figure7.3
Voltage measurement on a circuit

On a PCB the inputs and outputs on the chips are connected with one wire. The return
path is usually common to a ground plane. Figure 7.4 shows atypical grounded circuit in
the form of a digital gate. The outputs of single ended circuits are always referenced to
the common side of the circuit. If the input of the circuit is raised or lowered the output
will rise or decrease in the same manner. If more than one circuit is tied to the same
common ground then noise from one circuit will flow to the other. An example of a
single ended circuit would be RS-232 communications systems. On data acquisition
systemsit is common to see grounded sensors and common anal og inputs.

Single ended measurement of grounded sources

Single ended measurements of grounded sources are circuits where each end of the circuit
is referenced to the same ground or common. Most equipment is designed with the output
of one circuit connected to the input of another circuit and a common ground. In this type
of circuit, if the ground reference of either the source or receiver changes then the output
voltage will also change.

122 Practical Embedded Controllers

7.1.6

Microcontroller

Figure7.4
Sngle ended to single ended

Single ended grounded equipment

If one of the leads of a piece of test equipment has a low resistance to ground then that
piece of equipment is a single ended measurement device. Usually any piece of test
equipment that plugs directly into the mains power source can be considered a grounded
piece of test equipment.

Some of the usual types of single ended test equipment are:

¢ Bench top digital voltmeter
¢ Bench top oscill oscope

¢ Bench top function generator
¢ Bench top spectrum analyzer

Measuring a signal with one side grounded can cause incorrect reading, because the
ground potential on the test equipment many be different to the ground potential on the
equipment. This ground may or may not be earth ground and indeed it is possible that
there are multiple types of grounds on the same printed circuit board.

Some of these grounds are called:

¢ Earth ground Earth ground

¢ Ground Typicaly earth ground

¢ Shield ground Typicaly earth ground

e Common A common connection point

¢ AGN Analog ground

¢ Digital ground +5 volt power supply ground

o VSS +5 volt power supply ground

¢ Signal ground Sensor or communication common
¢ VCC Not +5 volt supply ground

(might be +/-12 volt ground)

7.1.7

Noise reduction 123

+V
1ok
/0 Buller
10 K:e
Digital V2| O
30v
anc | O L 4¢— Digita

Interface
Cirguitry

Ana og Digilal

GND GND

Figure7.5
Sngle ended input measurement

A single ended measurement of floating sources is when afloating or differential source
signal is measured with reference to a grounded measurement circuit. The source can be
any type of circuit that is not grounded. The receiver can be any type of circuit that has
one of its inputs referenced to ground or a common. (See Figure 7.6.) As can be seen
from Figure 7.6 there cannot be any common mode voltages with this type of circuit
because one of the outputs from the floating source is referenced to ground. And if the
ground potential changes, the voltage of the output signal will change in reference to the
ground.

+5

O 0 O o0 0O O O
OO0 O O C O O O0—

ov

Figure7.6
Sngle ended circuit

Differential noise circuits

A differential input amplifier is an amplifier with two inputs, usually oneis labeled with a
plus and the other is labeled with a minus. (See Figure 7.7.) The output of the amplifier is
the difference between the inputs. The outputs are not referenced to ground or common,
only to the difference of the inputs. The amplifier is usually extremely high input
impedance. This means that the receiver will not load down the circuit when connected to
the transmitter. Differential circuits also typically have a high common mode rejection
ratio. This makes the amplifier very resistant to common mode voltages and noise.

124 Practical Embedded Controllers

7.1.8

Foating or ungrounded signal sources, as shown in figure 7.8 do not have either of their
signal sources directly connected to the system ground. This means that the signal source
is not referenced to an absolute reference. The potential difference between the signal
input lines vary according to the output line from the transmitter, not according to the
ground potential. Both of the lines have a voltage potential to ground, but this is not part
of the measurement equation.

A typical example of measuring a grounded signal source with a differentia
measurement circuit is shown in Figure 7.7. This system places the output of the source
on the positive input of the differential amplifier while connecting the ground or common
of the source to the negative input of the differential amplifier. Using a battery-operated
voltmeter to measure an RS-232 transmission line is a typical example of differentia
measurement of a grounded source.

Sensor) G"\

X\
™~ Case

— Ground

Figure7.7
Ground signal source to differential amplifier

The following Figure 7.8 shows a typical example of a differential measurement of a
floating source. The source is called a floating source because neither of its outputs are
directly referenced or connected to ground or common. This type of system is considered
the least noise inducing method of measurement. Because neither circuit is connected to
ground, there is little chance of ground induced noise. An example of this type of
measurement and source system is an RS-485 communication system.

Figure7.8
Floating signal source to differential amplifier

Differential test equipment

It is important in developing an electronic noise reduction system to understand which
test equipment is single ended and which is differential. The following is alist of single
ended and differential test equipment. To be sure which type your equipment is it is best
to test it by measuring the resistance of each test lead to earth ground.

Any piece of test equipment that is battery operated. Such as:

¢ Hand-held digital voltmeter
o Battery powered oscilloscope
o Portable spectrum analyzer

7.1.9

Noise reduction 125

Common mode noise problems

In an ideal world the input to a floating receiver would only receive the difference
between the two inputs. Unfortunately everything on and above the earth is referenced to
ground. And because the ground level can changeit is possible for the input voltages on a
circuit to reach a point where the circuit fails. The equal voltages, with reference to
ground, on the inputs into a differential amplifier are the common mode voltages. A
diagram of this effect is shown in Figure 7.10. To calculate the common mode voltage,
use the following formula;
V (common mode) = (V, + Vp)/2
Where
V, = voltage at the non-inverting terminal of the measurement system with respect to
the instrumentation amplifier ground
Vp = voltage at the inverting terminal of the measurement system with respect to the
instrumentation amplifier ground

Differential = -
Signal Source Vo={Va- V)
ww """"" .
Common : Z
Mode = Vs/2 1 %Zz Va I3 Vo
Voltage = Vg | K >——=
Z
AMA . :
------------------ z, |
f— J; ! —_—
= Ground 2

Figure7.9
Common mode voltage

Manufactures supply common mode voltage limits with the specifications of their
products. These values are the upper and lower voltage limits that the product can reliably
reject before it fails. A common example would be an upper limit of +12 and a lower
limit of —7 volts. This means that the voltage on each line of the device with reference to
ground can not exceed +12 volts or be lower than —7 volts. If these levels are exceeded
the device will malfunction and possibly be damaged.

126 Practical Embedded Controllers

7.1.10

+5
t +5 Volts
A
4 oV — I
N
L Cutput

:
B
‘ l
4‘ A - B = Output
Figure 7.10

Common mode and the differential amplifier

Common mode rejection ratio

In an ideal world with ideal differential amplifiers the differential measurement device
would reject any common mode voltages. Unfortunately this does not happen. Every
differential input device does reject some common mode voltages. This rejection ratio is
expressed in the formula as

Formulae

v, +V,)

Common mode voltage = 2

Common mode rejection ratio = 20 Iogl{(i'/vl_vj

out

Low impedance drops as noise sources

Whenever a system is developed where there are multiple receivers on a common wire,
see Figure 7.11, a noise source can be developed due to low impedance on one of the
nodes. On a rare occasion a chip will develop low impedance on its output. This will
cause the chip to draw a large amount of current and the chip will get hot. Low
impedance can be thought of as a low resistance on the line. This can drag the correct
signal down and also allow injected noise from the faulty node. A node is defined as any
receiver and/or transmitter that are connected to a system. This low impedance can be
caused either through faulty design or afailure of parts within the node.

7.1.11

7.2

Noise reduction 127

+5 \olts

Figure7.11
Common mode voltage with noise

Types of externally induced noise

There are three basic types of external noise sources that can induce noise into electronic
systems. They are:

¢ Conductive coupled noise
¢ Capacitive coupled noise
e Magnetically coupled noise

Conductive coupled noise is transmitted to the equipment by way of direct connection,
where as the other two, capacitive and magnetic coupled noise are induced into the circuit
by way of close but not direct contact. It is unfortunate that each of these types of noise
coupling has the same effect on electronic circuits. Any of these noise insertion methods
can combine to create havoc in acircuit. A full and complete understanding of each of the
noise sources is an important part of devel oping a noise reduction system.

When one signal from a circuit is induced into another circuit it is sometimes called
cross talk. Cross talk can happen on cables, on printed circuit boards or even within a
single device such as adigital chip. One of the most common ways cross talk is produced
iswith conductive coupled noise.

Conductive coupled noise

Conductive coupled noise is created when part of an electronic circuit is eectrically
connected to another. Which circuits are affected depends on the noise produced by each
circuit and the susceptibility of each circuit. Either a common impedance ground, a
common supply voltage or common signal input can generate conductive coupled noise.
In Figure 7.12 each circuit has a common impedance ground. The current from one
circuit can combine with the current from a second circuit and therefore conduct noise
into the second circuit’s amplifier. This type of noise coupling is common in poorly
designed circuits and systems where large current or voltage devices share a common
ground or power supply with alow current or voltage device.

128 Practical Embedded Controllers

7.2.1

7.2.2

&

Transducer

O,

<

VoV oV

v
—»
M

Common Signal
Return

Figure7.12
Conductive noise

Conductive noise from external equipment

The amount of noise caused by a common impedance ground can depend on the relative
power levels of each of the circuits or the power of the external noise. In one instance a
noise voltage of minus 30 dB may not cause any problems, but at other times a noise
level of minus 70 dB below the signal level may cause al kinds of problems. The choice
is then whether it is appropriate to reduce the amount of noise from the offending
equipment or reduce the sensitivity of the receiver.

Conductive noise from transmission lines

The earth ground that connects our equipment to the power point is a perfect example of a
common impedance ground. If some high powered device like a motor is connected to
that same mains power ground then there is potential for common induced noise. Noise
can be introduced to our equipment through that ground when the motor is turned on.
Noise can aso be created by the power station itself. These can include over-voltage,
under-voltage, switching at the power station, lightning, brownouts or even noise induced
from a high power user. This noise cannot only come from the groundside of the system
but also come from the active or neutral side of the transmission line. Most of the time
this type of interference is only temporary, but it is possible that noise induced from
transmission lines could cause ongoing problems or even destroy unprotected equipment.

7.3

7.3.1

Noise reduction 129

Figure7.13
Power cable noise

Capacitive coupled noise

A capacitor is defined as two plates of conductive material separated by a dielectric. A
dielectric can be any type of insulating material such as air, paper, glass, mica, ceramic,
silicon or plastic. The amount of capacitance depends on the insulating material, the
closeness of the plates and the size of the plates. The frequency of the noise is also a
factor. Because capacitors like to pass higher frequencies, the higher the frequencies of
the offending signal the more extreme the problem becomes. The closeness of the wires
and how long the wires run next to each other increases the amount of induced noise.

Capacitive noise from adjacent equipment

Electronic or electrical noise can be transmitted from one device to another because of
this capacitive effect. AC voltage noise is the main type of noise transmitted. As shown in
Figure 7.14 the stray capacitance caused by the close proximity of one circuit to another
can induce a noise level into the second circuit. This induction is a function of the
closeness of the two pieces of equipment, the frequency of the offending equipment and
the types of enclosures that surround the equipment. Plastic boxes or enclosures give no
protection from noise.

130 Practical Embedded Controllers

7.3.2

7.4

R 1
MWWy
) I2
Transducer —C2 '3 l g R
; 4
MWW
= Ro — C 4
/7~ External
av (E1) Noise
gt Gen

Figure7.14
Capacitive noise coupling

Capacitive noise from communication lines

The most common type of delivery of capacitive coupled noise is through communication
lines. All types of wire transmitted communication systems have the ability to induce or
be induced with capacitive noise. This problem exists because the wires for the
communication lines are invariably placed adjacent to other cables. These cables can run
next to each other for miles. This length can cause a large plate size between the wires.
The insulation and air between the cables become the dielectric. This closeness aso
increases the capacitance between the cables. Manufactures of cables supply information
about the capacitance of their cables. This capacitance is usually expressed in pica farads
per foot or nanometers per meter. It is not uncommon to run many different types of
communication, control and power linesin one cable. This can lead to multiple sources of
capacitive coupled noise within asingle cable.

Magnetically coupled noise

In the 1819 Hans Christian Oersted a Danish physicist discovered that when a current was
passed through a wire it created a magnetic field around the wire. Inversely, it was found
that a magnet passed close to a wire would cause a current to flow in the wire. These two
discoveries explain the cause and effect of magnetically induced noise. When the current
flows in the wire a magnetic field is produced. This magnetic field is made up of what is
called lines of force. Theses lines of force rotate in a clockwise direction when viewed
from the positive pole (see Figure 7.15). The strength of the magnetic field is proportional
to the amount of current flowing through the wire.

Noise reduction 131

Ty
B S SR
Current
~ “
Figure7.15
A magnetic field created
741 Magnetically induced noise from adjacent cables

When AC is applied to a wire, current can be induced to flow in adjacent wires. As the
magnetic lines of force cut across the adjacent wire they induce a current and voltage into
that wire (see Figure 7.16). This magnetically coupled noise is produced when the
magnetic field created by one device induces an unwanted current or voltage in an

adjacent device.

There are three conditions that relate to the ability of a magnetically coupled noise
source to induce noise into an adjacent wire:

o Therelative location of the wires to each other
e The power of the signal in each wire
e The frequency of the noise source

/)

Current

Figure7.16
Magnetic coupling from adjacent wires

Current

132 Practical Embedded Controllers

7.4.2

7.5

Magnetic coupling occurs best when the source and receiver wires are close together,
and are run in parallel. When the wires are close and are run in parallel the two wires act
like a transformer. The expanding magnetic field cuts across the receiving wire and
induces a current flowing in the same direction as the source. The receiving wire then
transfers this current to the equipment. The closer the wires, the stronger the magnetic
field will be. The longer the wires run in parallel, the more chances the magnetic field has
to enter the receiving wire.

Magnetically induced noise from adjacent equipment

Strong current from relays, AC motors, coils, transformers, solenoids, or power lines can
induce magnetically coupled noise into a circuit. Whether or not the voltage/high current
equipment can induce magnetically coupled noise depends on the closeness of the
equipment and the current draw of the equipment. An AC water pump may be meters
away from a receiver device, but because it is giving out large amounts of
electromagnetic noise, it could affect the receiver circuit. High-tension lines give off
tremendous amounts of electromagnetic noise and sometimes even enough to light a
fluorescent tube.

Figure7.17
High tension lines

EMC and noise reduction in PCB design

Noise reduction in PCB design has become an extremely important issue as of late. This
is because of the huge amounts of digital electronic equipment in use today. There are
two main factors that have contributed to the increase in noise problems in equipment.
One has been the advent of electronic equipment that is very sensitive to noise. And the
other is that devices are now running higher clock speeds. Higher clock speeds mean
higher frequencies and therefore more radio frequency noise. A 700 MHz CPU can
become a 700 MHz radio transmitter, all it needs is an antenna. Four methods are used to
reduce the ability of acircuit on a PCB to transmit noise.

7.5.1

Noise reduction 133

They are:

¢ Segregate the analog, digital and power supply circuits on the PCB
¢ Lessright angles and ground loops on the PCB

¢ Ground planes to absorb the noise

¢ One and three dimensional Faraday shields

EMC rules are now in place that provide the designer with official noise reduction
standards. In the following text a summary of those standards will be discussed.

Figure7.18
Noise to and froma PCB

Placement of analog, digital and power supply circuits

Normally in the past there were conflicts between PCBs that were a functionally layout
and those that were logically layout.

In afunctionaly laid out PCB the parts are placed on the board in away that optimizes
the space on the board and makes it easy to connect the parts. Digital and analog parts
were often placed next to each other in a structured manner. The sub-systems on the
board can then interact with each other and create noise in the form of capacitive coupled,
inductive coupled and a combination of both we call EMI (electro-magnetic interference).

The good thing about the functional layout was that it was easy to design and the parts
could be placed very close together. The problem with this method was that sub-systems
were mixed together and therefore created induced noise on the PCB. When PCBs were
mostly analog and used slower clock speeds, this was not too much of a problem. With
circuits becoming more susceptible to noise and running faster, this method of PCB
layout is not acceptable.

In alogical layout the sub-systems are placed on the PCB as they are laid out on the
schematic. When a design is done using this method the parts on the board flow from | eft
to right. The power supplies and inputs are on the left and the outputs are on the right.
This practice can mix analog systems and digital systems with each other on the PCB.
The logical method has one main advantage. It is easier to troubleshoot and understand
than the functional method because it is follows the schematic. The problem with the
logical layout is that the analog and digital sub-systems are often mixed and this can
cause noise problems. This method israrely used.

134 Practical Embedded Controllers

7.5.2

The method most commonly used by designers might be described as extended logical.
That is, it is still somewhat logical but places the parts in a segregated logical manner.
The board may still flow from left to right, but the power supply, analog and digital sub-
systems are segregated into their own physical sections of the PCB. The sections are often
separated by a one-dimensional Faraday shield or a ground plane.

filtered interfaces overall enclosure
Non-critical /
Critical power supply
circuitry
(digital or
sensitive
analog)
eeed
Non-critical circuitry —Q

screened sub-enclosure

Figure7.19
Proper layout of an EMC PCB (Courtesy of EMC for product designers)

Digital circuit decoupling

The purpose of the capacitor decoupling is to reduce transient spikes of noise due to high
speed switching on the PCB. The capacitor acts like a buffer to the voltage spike and
keeps the supply voltage on the chip more constant. Placement of the capacitor in relation
to the chip it is protecting is critical. The capacitor should be placed as close as possible
to the chip. It is also best to place the capacitor an equal distance between the V.. and
ground supply to the chip. Thisis done by placing the capacitor in the middle of the chip,
either on the back of the PCB or inside the chip holder. Placing the capacitor inside the
socket is common when large chip sockets are used on the PCB. As more and more PCBs
become surface mount the first option of placing the capacitor on the back of the PCB is
becoming more common.

C on reverse
of board

a) adequate b) improved c¢) on ground plane d) as c) with series L

Figure 7.20
Decoupling capacitor location (Courtesy of EMC for product designers)

7.5.3

7.5.4

Noise reduction 135

Ground planes

Ground planes have changed with the new rules on EMC. In the past, designers placed a
minimum amount of ground planes on the board. It was seen as useless and a waste of
copper. With the new rules every square millimeter of space is either a track, space
between a track or a ground plane. Often multi-layer boards have ground planes that
cover the top and bottom of the PCB with the tracks in the middle. Although thisis a
good practice from a noise point of view, it increases the cost of the board and makes the
board unrepairable. Some manufacturers even design five layer PCBs with three layers of
ground plane, one on top, one on the bottom and one in the middle.

1D and 3D Faraday shields

Figure7.21
Voltage and ground tracks on a PCB (Courtesy of EMC for product designers)

Michael Faraday (1791-1867) invented the Faraday shield. It is an electrostatic shield
that is made by placing conductive material (often aluminum or copper) around some
device and connecting that material to ground. The better the conductor (in other words,
the less resistance it has) the better the shield will be. Three examples of a Faraday shield
would be, the shield on an audio cable, the plates in a transformer and the box on an
electric guitar. The braided wire around the conductors in audio cable is connected to
ground and protects the signals from external noise. The plates in a transformer prevent
capacitance between the primary and secondary windings. Aluminum cages or boxes are
placed around sensitive and noisy systems on circuit boards.

136 Practical Embedded Controllers

7.6

Figure7.22
Faraday shield on a PCB

Conclusion

In this chapter we have explored the definition of electronic noise. We have stated that
one man’s noise is another man’s signal. It is important to remember that noise is always
present and that the goal isto reduce noise to the point that is does not affect our signal.

We have defined the sources of electronic noise. Electronic noise comes from one of
two general sources, internal and/or external. Both internal and external sources of noise
are either single ended or floating sources. We found that there are three types of noise
coupling systems, conductive coupling, capacitive coupling or magnetic coupling. Each
of these types of coupling has its own way of getting noise into a circuit.

Conductive coupling injects electronic noise into a circuit by way of a common ground.
Capacitive coupling acts like a capacitor to put noise into a circuit. Magnetic coupling
puts lines of force across the conductors of acircuit and induces noise.

There are two types of noise measuring systems, floating or differential and single
ended or grounded. These two systems along with the two types of noise sources form
four types of circuits, floating to ground, floating to floating, grounded to floating and
grounded to ground. Also we found that test equipment was either grounded or floating.

Knowing the sources, types and measurement characteristics of electronic noise is the
first step in developing an electronic noise reduction system. | hope this chapter has given
you a clear understanding of where noise comes from and how it couples itself into
another circuit.

8.1

EMC grounding solutions

Objectives

When you have completed this chapter you will be able to:

Describe some common misconceptions concerning grounds
Explain how to measure a voltage with reference to ground
Explain how ground is used as areturn path for a circuit

Explain how ground is used as a noise insertion point for a circuit
Describe a clean ground

Describe how to build a spike ground

Explain how to build atrench ground

Explain how to build aground plane on a PCB

Introduction to EMC grounding solutions

This chapter discusses basic and practical grounding techniques. As electronics becomes
more and more sensitive to noise and high voltages it is increasingly more important to
pay attention to grounding systems. The horror stories of electromagnetic interference are
many, with some even causing loss of life. With the proliferation of electronic equipment
there is bound to be clashes between different electronic systems. Mobile phones causing
airlines to go off course, heart machines stopping when a computer is turned on in the
room and safety interlocks failing when the maintenance person uses the hand-held radio
are just a few of the ever increasing problems that can be caused by electromagnetic
interference.

In the past, earth grounding was seen as the best way to reduce electronic emissions and
protect existing equipment from external noise. But now, it is realized that how and
where earth grounding is installed is an important factor. In fact it is often found that if
the grounding is done incorrectly that even more noise can be injected into the equipment
than if there was no ground at all. With poorly designed digital equipment, a common
ground can be thought of as a potential noise injection system.

138 Practical Embedded Controllers

8.2

8.2.1

To develop a grounding system that will reduce rather then increase the amount of
noise in the system we need to start with afew rules:

Ground is never 0 volts

Ground is never 0 ohms

Ground is often a common return path for the current of a system

Ground should be treated as a noise insertion point into our system

A non-grounded system is the quietest from a noise point of view

An earth grounded system is better high voltage or lightning protection than
anon-grounded system

Figure8.1
Earth ground

EMC grounding

Ground specifications

A common mistake engineers and technicians make in grounding is that they assume that
ground is O volts. This is not true. All grounds have resistance and therefore a voltage
drop between the measured ground point and any other point. Just because the technician
or engineer puts the black lead of the multimeter on a point in the circuit does not make it
0 volts. The point where the black lead is placed is only a reference. Often if signal
voltage is measured, with reference to a common (ground) point and then is measured
with respect to earth ground there will be a different voltage. If the same point is
measured to a different earth ground it will be found that the voltage is different again.
This often worries technicians until someone points out that presence of voltage
differences is not necessarily a problem. Noise is aratio of the power of the signal to the
power of the noise. Power is a function of voltage times the current and just voltage on a
circuit without current does not usually cause a problem.

EMC grounding solutions 139

® 0@
I

Figure8.2
Ground is not 0 volts

Thereis an old saying in electrical circles that ‘ground is green the world around’, this
is not totally true. Often ground is a black wire. All grounds have resistance and are never
0 ohms. Every wire and track has some resistance and the common that returns to ground
is connected through these wires. When engineers design a system they will often specify
the minimum requirements for the resistance from the equipment to earth ground. This
value is often in tens of ohms. They will also possibly specify the resistance of the earth
ground to another earth point some distance away from the equipment’s earth ground.
Isn't earth ground 0 ohms? Well no it is not. It has aresistance to earth also. Of course the
value of this resistance depends on where the earth ground is measured. When current is
passed through a circuit or ground path that has resistance there is a voltage drop from
one end to another. If you think you may have an earth grounding problem it might be
best to call in a professional grounding contractor to measure and adjust your grounding

system.
VWV 1 VWA

L

Figure 8.3
Ground is not 0 ohms

Real world example

While troubleshooting a noise problem at a microwave sight in California, | did a visua
check of the grounding system. The connections looked good and seemed to have very
little corrosion. The voltage difference between the common earth point and the
equipment was minimal, so | decided to check the cable to the earth ground point. The
triple zero sized wire looked good until | reached the end at the actual earth grounding
point. When | tugged on the cable going into the ground the wire quite easily came right
out and | was holding the grounding point for the whole radio site in my hand.

It turns out that the hole where the earth ground was located was not draining. The
water that was poured in every month corroded the wire until it broke off from the copper
plates in the hole. To rectify this problem the grounding engineers put in a trench ground
thereby replacing the pit ground. This example is a typical problem that can happen at a

140 Practical Embedded Controllers

site. Good planned maintenance is essential for consistently good working equipment.
The cause of the above example was that the designers of the earth ground assumed that
the hole would drain. One area of common presumption is the mains power system.

With mains and other power systems the grounding, or common system is the return
path for the whole system. This means that in a series grounding system any common
point along the way to the ground will be a different voltage when compared to any other
point. The amount of current that can and does flow through the common wire can be
quite large. These large currents are always looking for better or more paths to ground. If
sensitive digital equipment is connected to the same ground as a high current device then
it is very possible that the noise from the high current equipment will show up on the
digital system. Single point parallel grounds and grid grounds are better then series
grounds because there is no common return path to ground. Series single point grounding
systems should be avoided at all times.

Afet

<{>_ Bj 2 i
Bret
7
Figure8.4

Ground as a return path

The worst example of aground path problem | ever saw was at a golf course in Western
Australia. The ground and neutral wires corroded in the ground on the lines to the garden
maintenance building. The 240-volt active line found a return path through the irrigation
controllers on the fairways by way of the computer in the gardening shed. The AC
voltage flowed through the computer in the building, jumped onto the common wire on
the communications wire and then flowed through the lightning protection parts on the
PCB in the controllers to ground. The electronic parts on the PCBs in the controllers
became so hot that they literally fell out of the PCB (the PCB is upside down in the box).
Luckily when the melted parts were replaced with new parts the controllers still worked,
but the computer was toasted. But even there they were lucky because the computer
didn’t catch on fire and burn down the building. Thisis a pretty extreme example; most of
the time return path noise causes only noise on the line.

In the past electrical engineers have looked at ground as a place to dump noise. All
filters are designed to remove the unwanted noise from the circuit and put it in the
ground. Unfortunately as electronic equipment has evolved it has become more
susceptible to noise. This means that filters may only move the noise from one part of the
circuit to another or from one device to another. Any point in the system that is connected
to ground should be looked upon as a potential noise insertion point into the system.
Devices that connect to a common at the bottom of the cabinet are very susceptible to this
common noise. Most cabinet installations use a common ground bar at the bottom of the
cabinet. The placement of equipment in the cabinet and how they are connected to the
ground bar on the bottom of the cabinet can be an important factor in the reduction of
noise.

8.2.2

EMC grounding solutions 141

From a noise point of view if two circuits or devices are completely separate from each
other, the chances of them interfering with each other are minimal. When extremely noisy
equipment is connected on the same mains equipment then it may be best to connect
sensitive digital equipment on its own separate ground. It is becoming more and more
popular to develop battery powered electronic equipment to completely isolate the
electronics from high power devices. A good example of thisis a microcontroller that is
now in production in the UK that is completely battery operated. The manufacturer says
that it will run for 5 to 10 years without replacement of the batteries. The microcontroller
circuit communicates with the relays through a one-foot infrared link.

One of the situations in grounding is that when there is a possibility of high voltage
entering the equipment it is better if the commons of different equipment are connected
together. This is a trade off with the above noise problem. The reason for this is that if
there is any resistance between close equipment when the voltage of one rises due to high
voltage, the relative voltage to the other device will also rise. This can happen if some
high voltage from a lightning strike makes its way to a piece of equipment in a cabinet
full of different devices. A common belief is that lightning aways looks for the best
ground, this is not entirely true. In reality lightning will make a path for any and all
grounds, even bad grounds. If two grounds are next to each other and one is a good
ground and the other is a poor ground, lightning will probably take both.

7 N\

Good Bad
— Ground Ground
Figure 85

How lightning affects equipment

Types of earth grounds

There are three basic types of earth grounds...

Circuit A Circuit B Circuit C Circuit D

[o+Ip+lc+lp L 37N L 3%} ric 250

gl il -

Ground Z Ip+lctip Iptlp Ip

Series Single Point

Figure 8.6
Series multipoint earth ground

142 Practical Embedded Controllers

Ciroumt A Circuit B Circuit C

Circut D

I

tl-

E

tio

i

Parallel Bingle Pomt

Figure8.7
Sngle point parallel earth ground

— ||//| ’/
701rcu1tA| /'|Clrcu4tB| //’]Clrcmtc B Clrc:mtD|

3 IA JIB [IC

Fip

- o
= o -~

Three Dimensional Ground Plane

Figure 8.8
Grid earth ground

The most frequently installed earth ground is the single point parallel common ground
as shown in Figure 8.7. Besides being used for earth ground the single point parallel type
of ground can be used on a PCB. On a printed circuit board the single point paralel

ground could be configured in three different ways...

High power/

|Power supply |

-

I Analog I r Digital J inductive o/ps
Figure 8.9
Smple single point ground
Analog - Digital Digital
Analog
T 4

Figure 8.10
Modified single point ground

Low-power o/p

Low-power o/p

High-power/
in(?uctive o/p

8.3

8.3.1

EMC grounding solutions 143

multipoint grounding in digital sections
~ digital
Low-level E
analog output
digital digital
Wideband
analog Wideband
analog
T TIx
\
’ hybrid grounding capacitors
Figure8.11

Multipoint/single point ground

EMC grounding on a PCB

It has been found that one of the best ways of reducing noise on a printed circuit board is
through good grounding and power distribution. Some of the old ways of laying out a
PCB are incorrect, therefore we now layout PCBs quite differently. The designer uses
correct placement of components, tracks, and Faraday boxes to create high quality and
noise reduced PCBs. The biggest drawback to the placement of parts on a PCB with
relation to better noise levels is that it becomes more difficult to layout the board. This
means that the designer will take longer and the cost of the board and project will
increase. Most countries around the world have passed laws or regulations that define the
requirements for PCB manufacture in relation to EMI (electro-magnetic interference).
This has forced most manufacturers to review and often redesign their products to come
in line with EMI rules.

Due to recent changes in EMI regulations, laying out PCBs with respect to noise
reduction it is now more defined. The following rules give us an idea of how to best
design a PCB with minimum noise transmission.

PCB design recommendations

Identify the circuits that emit the most noise

Any analog or digital high speed switching circuit can create radio emissions. These
emissions can affect both circuits on the PCB or external circuits. Analog or digital high
speed switching circuits should be kept well away from other sensitive circuits. The rule
of thumb is to keep similar circuits next to each other and away from different circuits. If
there are both analog and digital high speed switching circuits on the same PCB, then
they should be separated from each other by using ground planes.

144 Practical Embedded Controllers

L~ Radiated

PN Noise

d 1

High Speed S
LI g

L B
SN
[N
A
L{ }J) / Track
D \ '
Nos

Identify the circuits that are the most sensitive to emissions

Low voltage analog circuits are more susceptible to noise than digital circuits. This is
because digital circuits are saturation systems and analog circuits produce varying levels.
This means that when a digital circuit is transmitting, it is only one voltage or another.
This makes it less susceptible to changes in voltage than an analog voltage circuit. If the
analog device is receiving some voltage and alittle noise is inserted in the circuit then the
output voltage of the analog device will change.

Chip

Figure 8.12
High-speed noise circuits

1 Volt of Noise

a2 @)

4.2 Volts

Figure8.13
Analog circuits are very susceptible to noise

Minimize possible ground inductance

All common tracks on a PCB and external devices induce noise because of their
commonality. The noise from one device is induced on the other through the wire or track
that connects them. By using a paralel single point or grid type ground as opposed to
series ground, the designer can reduce the noise induced from one circuit to another on
the PCB. Connections from the power and ground rails to the chips should be kept as
short as possible. When it is appropriate it is best to cover the board with a ground plane
and leave just enough space for the components and tracks that connect them together.
The comb grounding system that was popular in the past is not acceptable today, although
it does make the tracking of the PCB easier.

EMC grounding solutions 145

CHP1 CHP2 CHP3 CHP4

LTI
L
LT
LT
LT

R

Figure8.14
Comb grounding system

Use a clean ground

A clean ground is a common that is separate from circuits and sub-systems on the PCB.
This does not mean that the clean ground doesn’'t eventually connect to the other ‘dirty’
grounds. The clean ground connects the sensitive analog circuits on the PCB together and
then connects at one point to the dirty ground system. Each PCB should have its own
clean ground system. Each of the PCB’s grounding systems are then connected together
at one point. That one point could be the single earth ground point.

suppression/filter components (e.g. DIL packs)

quiet interface ground\& o\

®
R 3)
/"”'% single-point link if necessary
Z

low inductance connection to RF ground

Figure8.15
A clean ground

Separate different type of circuits

Analog, digital, and power supplies should be kept physicaly away from each other
whenever possible on the PCB. This goes for complete systems in an enclosure or
cabinet. Also wires from these circuits should be separated in the cable runs and conduits.
Some distance should separate noise producers and noise sensitive equipment or circuits.
Traditionally PCBs have been designed such that the PCB more or less matched the
layout of the schematic. Usually the inputs are on the | eft and the outputs are on the right.
From an EMI point of view, the board should be laid out such that noise producers are
grouped together and separated from noise receivers. Circling each section with a ground
plane physically and electrically isolates different sections from each other. Each of the
ground planes should be connected together at one point, but analog and digital ground

146 Practical Embedded Controllers

planes should not extend over each other. If this is done, noise from the digital circuitry
will be coupled to the analog circuit.

In the old days designers placed components on the PCB wherever it was convenient.
The placement was usually done with the idea to reduce tracking problems. The main
problem with tracking a PCB is getting al the tracks on the board into their proper place
with a minimum of holes and crossovers. A crossover iswhen atrack has to cross another
track at a right angle. Since tracks cannot cross it is usually necessary to put a plated
through hole in the PCB and then run atrack on the other side of the board. Then another
plated through hole is put in the board and the track continues. The price and complexity
of the PCB increases every time a cross over is done. There are a limited number of
crossovers that can be done on a board before the board becomes a mess. Multi-layer
boards are used to reduce this problem. But this also increases the cost of the board.

Digital Analog
Circuits Circuits

Power

Supply

Figure 8.16
Separate circuits on a PCB

Design proper PCB ground planes

There are many different types of PCB ground planes. The simplest is a wide track
around the outside of the PCB. The most comprehensive grounding system is the
compound grounding system on a multi-layer PCB. Most designers today fill every spare
space on the PCB with a ground plane. This is not necessarily the best method of doing a
ground plane. It must be remembered that the purpose of the ground plane is not only to
connect the commons of the chips and components together but also to separate the
different types of circuits.

The basic types of ground planes from worst to best are:

The comb ground plane

Ground track around the complete PCB

A ground plane around each type of circuit

One side of the PCB as a complete ground plane
A ground plane on both sides of amulti-layer PCB
A three-layer ground plane on afive-layer PCB

8.3.2

EMC grounding solutions 147

clean ground

Power supply

‘) Vlog'sc Vanalog
ST

gr—
 —

digital interfaces _—

ADC

analog section

digital section (ground plane)

I/O ports —>

case or chassis

do not connect digital OV to ground here

Figure8.17
Ground plane on a PCB

Track placement

When two wires are placed in close proximity and a current is applied to the wires two
fields are produced. One is the electric field and the other is the magnetic field. The
electric field is measured as capacitance and the magnetic field is measured as
inductance. The electric field is proportional to the voltage divided by the distance
between the conductors while the magnetic field is proportional to the current divided by
the distance between the conductors. The further the tracks are from each other the less
voltage and current is coupled from one track to another. Ideally it would be best to
design the tracks on the PCB where none of the track are in parallel with each other. This
is not possible as most digital systems use a common bus to connect the chips. So to
minimize the coupling between tracks the designer can run short tracks and run the return
path close and parallel to the signal wires. Short wires have less noise coupling than long
tracks. And when the return path track is run in parallel and close to the signal the amount
of radiated noiseis reduced.

148 Practical Embedded Controllers

8.3.3

S determines overall loop
inductance in each case

parallel tracks

tracks on opposite
sides of the board

ground plane on opposite
side of the board, allows
return path for any track
above it

Figure 8.18
Track placement on a PCB

Faraday boxes

A Faraday box is a metal box, track or screen surrounding an electric circuit. It can take
many forms, from copper on a PCB to a complete room. The function of the Faraday
shield is to protect devices from radiating or receiving electromagnetic fields. It does this
in three ways. Oneis to reduce radiating electromagnetic noise by coupling the noise onto
the Faraday shield or box instead of the circuit. Next it provides a ground path for the
voltage and current created by the electromagnetic field. The third is to provide a shield
against incoming electromagnetic fields. There are three methods of building a Faraday
shield.

Floating — one dimensional non-grounded

The floating non-grounded Faraday shield is a screened area or box that is not connected
to anything. This type of shield is of minimal use unless the shield is made of steel or
some other ferrite material to shield against magnetic radiation. The non-grounded shield
is sometimes seen on PCBs as a single copper track around a crystal or sub-circuit. Thisis
of minimal value and it would be better if the track was connected to ground.

EMC grounding solutions 149

CRYSTAL

EXTAL 0 0
o O
o O MBEHS 11

Figure 8.19
One dimensional Faraday shield on a PCB

Grounded — earth ground

The grounded Faraday shield or box works better than the non-ground type. The ground
provides a return path for the current created by the electric field created by the
transmitting circuit. Because the ground provides a return path for the electric field, this
type of shield works better for electric fields than magnetic fields. If the shield or box is
made of a ferrite material then the grounded shield will work good for both types of
fields. This ground should be a clean ground whenever possible. If the Faraday shield is
in the form of abox or even aroom, the shielding material should be connected to its own
earth ground.

Figure 8.20
Typical grounded Faraday box

150 Practical Embedded Controllers

8.4

Negatively charged

In its best configuration, the Faraday shield should be connected to a negatively charged
power supply. This effect works similar to what's commonly called the Edison effect.
This effect is a function of the negatively charged electric and magnetic fields being
repelled by the negatively charged shield. It also provides a return path for the electric
fields. If the shield is also made of a ferrite material then the protection is provided for
magnetic fields. The Faraday shield that is negatively charged and made of ferrite
material is the best method for protecting against electromagnetic radiation. The
negatively charged Faraday shield is made by connecting the positive lead of a power
supply (a battery works best) to an independent earth ground. The negative lead is then
connected to the shield. The shield must be completely isolated and insulated from
normal ground or voltage. The biggest problem with negatively charged Faraday shields
is corrosion due to electrolysis. To reduce the corrosion it is best to only turn on the
Faraday shield when needed.

+ AN Isolated
= from ground

Figure8.21
Negatively charged Faraday room

Protecting a PCB from lightning

In Singapore, a city manager once asked me why we couldn’'t protect our electronic
equipment against a ‘little bit’ of lightning. This is like trying to protect the equipment
againgt alittle atomic bomb. If God looks down and decides to take out your equipment,
it is gone. There is no complete protection against lightning or other high voltages.
Lightning protection is like safety in general, there is no such thing as being completely
safe, there are only levels of safety. In lightning dissipation there are only levels of
protection, not complete protection. Many people have been very disappointed when after
spending thousands of dollars on lightning protection and the very first storm damages
their equipment.

To give sensitive electronic equipment some measure of protection from lightning
protection, designers do their best to give the lightning another return path. The ideaisto
short-circuit the lightning to earth ground instead of through the equipment. It is thought
that the ideal equipment, from a lightning point of view, isthe totally isolated device. The
aeroplane is a perfect example of this. Thousands of aeroplanes get struck by lightning
every year and only a few of them are seriously damaged. But they do get struck. Why?
Everything on or near the earth is referenced to earth. One common misconception is that

8.4.1

EMC grounding solutions 151

lightning follows the best path to earth ground. It has been my experience that lightning
follows any path to ground it wants. It will take any ground it can get and sometime for
some strange reason a seemingly worst ground rather than an obvioudy better ground.
This is why even the best-protected equipment can be damaged by high voltage or
lightning. Having said that, any protection is better than none.

Figure 8.22
Typical lightning protection device

Lightning rods were invented by Benjamin Franklin in the seventeen hundreds. The
idea of the lightning rod is to collect the high voltage from the lightning and provide a
safe path to earth ground through a wire instead of through the building. Ever since the
first rods were installed there has been a controversy on whether the lightning rod attracts
lightning. Most lightning rods are short to reduce lightning attraction. They are often
placed on the sides and corners of the building because it was found that most lightning
bolts strike the edge of the building and not necessarily the very top. Round balls with
short spikes are just some of the many fads that have come and gone in the lightning
industry over the years. Others have been, negatively charged spikes, positively charged
balls, and large high ground spikes placed some distance from the building.

Placement of protection on the PCB

High voltage, such as lightning, gains entry to most equipment through the outside
wiring. This is why the location of the high voltage protection is important in the
reduction of lightning. On external cabinet installations the lightning protection is usually
|ocated at the bottom of the cabinet where the cables come in from the outside. On a PCB,
the protection is located right next to the connector where the outside wires are installed.
It is important to remove the high voltages as soon as possible before they can do any
damage. The best method of protecting a cabinet from lightning would be to have a
separate inspection box that contained the lightning protection. This would physically
separate the lightning protection from the cabinet with the controller equipment, but this
israrely done.

152 Practical Embedded Controllers

8.4.2

The GDT, MOV and transorb

e GDT Gas discharge tube
e MOQOVs Metal oxide varistor
e Transorbs Bi-directional semiconductor

GDTs, MOVs and Transorbs are three of the most common components used for
lightning protection. As mentioned before, there is no perfect high voltage protection, but
the use of these devices does improve the chances of the equipment surviving a relative
small high voltage strike or static discharge. The functions of the GDT, MOV and
Transorb is to provide a path for the high voltage to earth ground before it has a chance to
get into the equipment and damage the circuitry. In Figure 8.23 it can be seen that the
GDTs are on the outside of the circuit, the MOVs are in the middle and the Transorb is on
the circuit side.

<«— Qutside Equipment —
GDT —— MOV ——
. _ Transorb
anv 45V 15V

To Earth Ground

Figure8.23
Placement of lightning protection on a PCB

When lightning produces high voltage or static in the outside world, it travels into a
device looking for a return path to earth ground. The first device that will react to
incoming high voltage is the transorb. It will short out very fast when the voltage is
higher than 15 volts (in this example). This is because the transorb is a silicon device
similar to a zener diode. It will short out in the microsecond range. Unfortunately the
transorb is very sensitive to high voltage and will be destroyed as the voltage rises. But by
this time the MOV has shorted out (when the voltage goes above 45 volts) asit is alittle
slower reacting than the transorb. But again the MOV may not survive this ramping up of
high voltage and there is a good possibility that the MOV will be destroyed. Hopefully by
this time the GDT has shorted out and it is sufficiently strong to short the remaining high
voltage to earth ground.

Notice that as the high voltage is coming in to the device it is shorting out in the
direction of the outside world. The problem is being moved out of the device.

Note: One of the best things that can be done to reduce the possibility of lightning
damage when a lightning storm is around is to turn off and if possible disconnect any
device that is connected to mains power or atelephoneline.

8.5

EMC grounding solutions 153

Microcontroller equipment ground

Whether connecting a microcontroller in a cabinet or 19-inch rack it is very important
that the grounding system be designed and installed correctly. Different industries and
companies have their own methods and rules for grounding systems. It is not our intent to
supersede these. This is only a guide to help the reader understand the basics of grounds
and the common practices used in industry for grounding microcontroller equipment.

cabinet
circuits in racks
isolated from

electronics ground
metalwork

distribution, close

vopsnanam -~ (I J QOO DD
oo

rack chassis

cabinet honded to
0ooggaoj =
oot
pekrar
dislribution
primary power antrance o’

i,

Figure8.24
Proper ground connection

In Figure 8.24 it is shown the proper way to connect microcontroller equipment to
ground and to safety ground. Notice that the equipment ground is connected to the safety
ground at one point in the bottom left-hand side of the cabinet. Inside the cabinet the
equipment has its own ground and that it is not connected to any other ground until that
one earth ground point. Also note that the mains power is run on the opposite side of the
cabinet. The drawing shows the power entering the cabinet on the same side of the
cabinet as the earth ground. This is to keep the ground lines short from the mains power
to earth and safety ground. The equipment must be completely isolated from the cabinet
and any metalwork that connects to the cabinet.

154 Practical Embedded Controllers

8.6

8.6.1

Figure 8.25
The wrong way to connect ground straps in a box

Enclosure or safety ground

The enclosure or safety ground is earth ground. Some type of earth stake or trench cable
ground is connected to the cabinet in the field. The purpose of this ground isto provide a
return path and reference for the devices in the cabinet. It is aso to provide a safe
environment for anyone that might come in contact with the equipment or cabinet. If the
cabinet was allowed to float above ground, then it is possible for the cabinet’s voltage
potential to become well above earth ground level. If the potential wasto get too high and
a person touched the cabinet while standing on the ground, it would be possible for that
person to get shocked. It is not enough to bolt the cabinet to a cement slab. It is possible,
as the ground dries out that the slab could become electrically isolated from ground
potential. To properly ground a cabinet the cabinet must be connected to an earth
grounding system such as an earth stake or trench earth ground.

Spiked earth grounds

The earth ground spike is a copper plated steel rod about two meters long. It is pointed on
one end and flat on the other. The pointed end is placed on the ground and then it is
hammered into the ground until only afew inchesis above ground level (see Figure 8.26).
The part above ground level should be high enough to connect the green and yellow
striped wire to the spike with a clamp. Only enough wire should be stripped so that only
the wire fits in the connector. More wire sticking out of the connector could snag on the
unwary pedestrian. If the wire is too short it may fall out of the clamp. The ground stake
isinserted in the earth at alocation very close to the cabinet. It is usualy located behind

8.6.2

EMC grounding solutions 155

and on one side of the cabinet. Sometimes if the cabinet has an open or false bottom it is
often inserted in the ground there and then the cabinet placed over the ground stake.
Often the installers will place a concrete pad with a large oval hole in the center for the
cables to come up through. On one side of the oval the stake would be inserted in the
ground and then the box placed on top. At no time should the ground stake be cemented
in with the pad. Ground stakes need maintenance and may have to be replaced. Local
installation rules and standards must be followed.

Figure 8.26
Soiked earth ground

The connection should be checked regularly for corrosion or damage. If the earth is
very dry it may be necessary to insert a plastic pipe next to the stake and fill with water
during dry times of the year. The strangest stake installation | ever saw was at a park in
Los Angeles. The installer placed the stake on the ground where it was to be inserted and
got up on the ladder to hammer it in the ground. He hit the stake once and it went in about
a foot. On the second hit the stake disappeared completely into the ground, never to be
seen again. Both of us just stood there looking at the small round and now empty hole in
the ground. We found out later that the park was built on an old trash dump (it's aworry).
The stake is now in some empty chasm under the park. The location for the stake was
changed and the next one went in correctly.

Cable trench grounds

When designing an installation it is necessary to take the natural environment into
consideration, especially considering the earth ground. If the ground around the cabinets
isnormal soil, then an earth ground stake would be used, but if the ground is either solid
rock or light dry sand then the trench ground may be best. The type and design of the
trench ground depends on the ground type. The trench earth ground consists of a trench
dug in the ground from one to three feet in depth. An uninsulated cable or steel copper
clad rods are then laid in the trench. Vertical ground stakes are often added at the ends
and middle to increase the earth ground area.

156 Practical Embedded Controllers

8.6.3

Bare Cables
> 10 Meters Leng —~

\ Earth Spike?

Top View

_ Star Cable Ground
Figure8.27

Trenched earth ground

In very rocky ground, where there is little topsoil, it is often necessary to blast multiple
trenches in the rock in a star pattern. The cable is then laid in the trenches and covered
with topsoil. The soil holds the water that is poured in the trenches. It may be necessary to
place water in the trenches from time to time. It is best, in this case, to leave the trench as
a depression in the ground so that water collects in the trench. The cables should be
checked every few months or at least bi-yearly for corrosion. The cables are then
connected together at one point and this is where the site or cabinet safety ground is
connected.

In dry sandy areas, like the desert, it is also often hard to obtain a good ground. In this
case the multiple star (good) or square (better) cable grounds (see Figure 8.28) are used.
Because the sand is dry, multiple stakes are also often incorporated into the grounding
system. Water is often used to increase the quality of the ground. If the sand is near the
beach or in alocation where there is good soil under the sand then awell could be drilled
and the steel pipe left in the ground and used as the earth ground. Because this pipe can
be some distance from the site, a large uninsulated cable is placed in a trench and
connected to the pipe.

Tower lightning protection

Towers use trench grounding as a method of increasing protection from lightning strikes.
A sguare trench is dug around the bottom of the tower to a depth of approximately one or
two feet. An uninsulated cable is laid in the trench and connected by welding or screw
clamp the ends. It is best to put earth ground stakes in the ground at each corner of the
square. If it is possible a cable or even better an aluminum tube is brought down from the
lightning rod at the top edge of the tower. Often multiple lightning rods are used. The
tubes are connected to the ground stakes at each corner. The tubes are stood off from the
edge of the tower asit comes down to the ground.

8.7

EMC grounding solutions 157

Earth Spike? e
Bare Cables

/

TOP VIEW

Square Cable Ground

Figure 8.28
Tower lightning protection

Conclusion

Even though our view of what ‘ground’ is has changed over the years, it is still a large
part of the noise reduction in PCB, microcontrollers and all electronic equipment. The
perception of what ground is and how it is used has changed due to changes in electronic
equipment. As speed increases in electronics, the need for design rules to reduce radiated
noise becomes more important. Also the low power of the electronics increases its
susceptibility to external noise. Misconceptions about commons, ground planes and earth
grounds often cause designers to create circuits that radiate excessive noise. And besides
radiated noise the designer must contend with reducing the possibility of the circuit to
receive noise.
Misconceptions about ground are:

Ground is never 0 volts

Ground is never 0 ohms

Ground is often areturn path for the current of a system

Ground should be treated as a noise insertion point into our system

A non-grounded system is the quietest from a noise point of view

A grounded system has better high voltage or lightning protection than a
non-grounded system

Figure 8.29
Sngle point parallel ground

158 Practical Embedded Controllers

For the PCB designer, the placement of components and design of proper ground planes
are the main technique to reduce both radiated noise and the equipment’ s susceptibility to
noise. The segregation of the analog and digital components is the first step in reducing
noise coupling. High-speed digital circuits often create excessive radiated noise while
analog circuits are very receptive to noise. It is necessary then to separate these circuits
physically on the PCB and surround them with a ground plane. It is also important that
the ground plane of the digital and analog circuits do not run in parallel on top of each
other. A Faraday shield is used to reduce noise in extreme situations. The three types,
floating, grounded and negatively charged can be used to isolate circuits and equipment
from radiated or induced noise.

Protection from lightning and high voltages has become very important because of the
proliferation of electronic equipment. Only a few years ago, motorized clocks were
controlling devices. These types of controllers are very resistive to high voltage, but now
all devices are controlled by highly sensitive microcontrollers. To adjust to this increased
sensitivity lightning reduction systems have changed. One way that lightning dissipation
devices have changed is that in the old day’s metal straps or cable was the usua way to
convey the current from a strike to the earth ground system. Now it is more common to
use aluminum or copper tubing. This is because of the increased surface area of the
tubing as opposed to the straps or cable.

9.1

Installation and troubleshooting

Objectives

When you have completed this chapter you will be able to:

Describe the different types of connectors used in microcontrollers
Explain how to properly connect awire into a screw connector
Explain the potential installation problems with screw connectors
Explain how to solder wires together for a good connection
Describe two different types of cable runs

Describe how to place different types of signal cablesin a cable run
Explain how to build a ladder type cable run

Explain how to pull wire through a conduit

Introduction to installation and troubleshooting

In this chapter we will discuss proper installation and troubleshooting techniques as they
apply to microcontroller systems. It is not our intention to supersede any standards, rules
or regulations defined by your industry. The purpose of this chapter is to impart some
common sense installation and troubleshooting techniques that specifically relate to
microcontroller systems. It is well known by most experienced technicians that the
installation techniques used in one segment of the electronics industry do not work, or are
not the optimal installation solution, for another. An example of this would be the
installation of a radio system compared to the installation of a data acquisition system.
Data acquisition systems don’t usually have coaxial cable or N type connectors. Having
said that, there are alot of similarities between different types of electronic systems. This
is often where the installer, technician or engineer runs into trouble. They apply the
techniques from one section of the industry to another and it doesn’t work. Something as
simple as tightening a screw connector on one type of equipment can be different from
another. One of the major differences between microcontroller systems and other systems
is that microcontrollers are more susceptible to noise. If the instaler tries to install a

160 Practical Embedded Controllers

9.2

microcontroller system in the same manner as a high power motor system, there are going
to be problems, guaranteed! If a data communications system is grounded in the same
way as the mains power system, it will be amiracle if the communications work at all!

LA d A & A B R A R _h K i

e
7 | -

Figure9.1
Equipment installation

Two very common problems found in the installation of microcontroller systems are
bad connections and noise from other equipment. Both of these problems can be reduced
or made worse by the design or installation. The designer can use and specify quality
connectors and proper instalation methods. The installer can follow the defined
installation procedure and make suggestions when something doesn’t seem right with the
installation. It is important for the technician to also be aware of the proper installation
techniques when repairs need to be done. In repairing the equipment the technician
usually has to remove and then reinstall the equipment. Knowledge of proper installation
techniques will help the technician reinstall the equipment correctly.

Connections — screw, crimp and solder

An experienced troubleshooter knows that the first test of a device that has failed is to
check the power. The next check is whether the connections are correct. This usually
starts with the power cord and then moves to any exposed connections. The reason thisis
done is that approximately 60% of problems with equipment that ‘worked this morning’
and ‘doesn’t work now’ are probably due to a loose or bad connection. (Assuming that
thereisno visua problem, like smoke billowing from the case.)

There are three basic types of connections on microcontroller systems:

e Screw connectors
e Crimp connectors
e Soldered connections

Installation and troubleshooting 161

Figure9.2
Crimp and screw connectors

Figure9.3
Crimp connector

Figure9.4
Large solder connections

162 Practical Embedded Controllers

9.2.1

Screw connectors

There are many different types of screw connectors, but they all have some things in
common. The basic idea of all screw connectors is to pinch the wires between two pieces
of metal and insulate the exposed portion of the wire from other wires or the equipment.
The way the wires are pinched is the maor difference between screw connectors. One
type uses the moving box method and another uses a moving flap. The box method
(Phoenix brand type) has a small metal box that is connected to the screw in the
connector. When the screw is turned the box moves up and pinches the wires against the
top of the sguare hole in the connector. This type of connector is considered better then
the flap type, but it does have one problem. If a small solid wire is inserted in the
connector, the box can act like a guillotine and cut the wire as the box israised. To avoid
this problem the correct size multicore cable should be used. To make the connection
even better, a crimp ferrule unit can be attached to the wire before being inserted into the
connector. It is debatable whether it is better to use the ferrule units if more than one wire
is to be placed in the connector. If done properly either method will work correctly. See
the following examples.

Figure 9.5
Good and bad screw connection

The flap type screw connector moves a spring-loaded flap by turning a screw from
above. The screw is not connected to the flap and therefore the flap may have to be
manually pushed up if the connector has been used before. Whereas the box type of
connector pinches the wires flatly, the flap type connector pinches the wires at an angle
and therefore is not as reliable as the box type. Again solid wires do not work as well as
multicore wires in the flap type connector. Even the crimp ferrule can be a hit of a
problem with flap type connectors.

Both types of connector come as single and two part connectors. The single PCB mount
is about half of the price of the two piece connector. But it is recommended that the
designer use the two piece connector. The one piece is not too bad if only a few
connections are to be made. If more than four wires are to be used in the connector, or if
the connector is going to be connected and disconnected a number of times, then the two-
piece connector is required.

Installation and troubleshooting 163

9.2.2 Crimp connectors

When crimping connectors most installers have problems because of the following:

The wires are too big or small

The wireis not stripped properly, wire too long or short
Using the wrong crimp connector

Using the wrong or cheap crimp tool

Crimp too tight or too loose

Using solid wire instead of multicore

Using crimp connectors, if done properly, is a good way of making a quality
connection. The advantage of the crimp connection is that the wire makes more contact
with the ferrule then it would if it was just stuck in a screw connector. Also because they
are crimped inside the connector, they have less chance of touching other wires.

Figure 9.6
Ferrules for crimping

Figure9.7
Good and a bad ferrule crimp

164 Practical Embedded Controllers

9.2.3

9.24

Soldering connections

Most people would assume that the solder connection is the best connection, but this is
not necessary the case. Often it is better to crimp the connection than solder it. The reason
for thisis that solder does not spring back. If the end of awire is soldered and then put in
a screw connector, over time the connection could become loose. As the connection heats
up and cools down the lack of springiness of the soldered end will cause the connection to
fail.

If you are going to solder wires together then the first and most important thing that
should be done is to clean the wires. Thisis not usually a problem with new installations.
The next step often causes problems. Place the proper size shrink tubing over one wire
before you solder them together. Don’t forget. Next the wires should always be twisted
together. Always verify that there is a good mechanical connection before soldering. Next
the wires should be heated, NOT the solder. Don’t paint the solder on the wires. Heat the
wires and then apply the solder to the wires, not the iron. Once the solder has flowed into
the wires remove the iron and hold the entire connection steady until the connection has
cooled. | usualy count to twenty, but this varies with the size of the connection. Larger
connections take longer. The shrink tubing is then slid over the connection, heated and
shrunk.

= QA

Figure9.8
Soldering the wires

Connector problems and solutions

All types of connections whether they are screw, crimp or the solder type can come loose.
This happens because of the following:

Vibration

Cycling from extreme cold to extreme heat to extreme cold etc
Screw connector not installed tight enough

Soldering the wires together on screw connector

Wires not twisted together before insertion or soldering

Solid instead of multicore wires were used

Too many wires were forced into the connector

Wires are too small

Wireis not centered in the connector

The connector was disconnected by pulling on the wires
Wires were not visually and mechanically checked regularly for tightness

Installation and troubleshooting 165

No connector can stand up to excessive vibration. Even the largest bridge or building
will fall if given the correct vibration for long enough. Equipment should be installed in a
vibration free location if feasible. If this is not possible then some type of shock
absorbing material for mounting should be used. When equipment is heated and cooled
repeatedly it can be looked upon as very slow vibration. As the wires expand, when
heated, and contract when the wires become cool, the wires can become loose. Often this
is difficult to control but if possible use air conditioning or at least a fan to cool the
equipment. It would be good if the controller temperature could be tracked and if there
was a problem then the connections could be checked more often.

Verify that the instaler is familiar with the type of connector that is being used. Don't
assume that just because the installers have decades of experience that they are familiar
with the connector that is now being used. No one knows it al. Check with the
manufacturer on the torque needed for tightening and use a torque-limiting screwdriver
when installing the wires. As mentioned before, wires should never be tinned or soldered
before put in screw connectors. Soldering the wires together is often thought of as a good
practice, but when soldered wires are inserted into screw connectors they can become
loose very easily. This is because the solder is not springy. It compresses and stays there.
As time goes on the wires will become loose easier than if not soldered. Before any
connection is made, there should be a good mechanical connection. If wires are to be
soldered then they should be twisted together. If two wires are to be placed in a crimp
connector then the wires should be twisted before inserted in the connector. For screw
connectors the wire also should be twisted before inserted in the connector. Often if two
wires are put in a screw connector without being twisted one wire will pinch and the other
one will be crammed in the corner. The wire in the corner could become loose.

Figure9.9
Proper screw and crimp connection

Use only the proper size, type and amount of wires specified by the connector
manufacturer. Most manufacturers do not recommend solid wires to be used in their
connectors. This is because the solid wires do not spring back as well as multicore wires.
Solid core wires are also affected more by vibrations and temperature. When too many
wires are forced into a connector and it is beyond specifications it is obvious that there
will be problems. Or if the wires are too small they may break easily or fall out.

166 Practical Embedded Controllers

9.3

9.3.1

It seems pretty obvious that it is not a good idea to disconnect a connector by pulling on
the wires, but it is surprising how often it is done. The resolution for this problem is
obvious. DO NOT PULL ON THE WIRES to disconnect the connector, pull on the
back shell only. Also it is important to turn the power off to the equipment before
disconnecting any connectors.

All ingallations should have some form of planed maintenance. A visua and
mechanical check should be scheduled and done often. The mechanical check could
consist of checking the torque of the screws on screw connectors. When first installed
wires should be given alight tug to make sure the wires are secure. This should be done
with the power off if possible.

Cable runs and trays

Cable runs and trays would on the surface seem to be an inconsequential and a fairly
straightforward subject, but the type of tray and its placement can be the difference
between a system that works and one that doesn’t. The manufacturer’s specifications
should be followed to reduce noise and to insure a quality installation. There are many
types of cable runs and ladders with plastic cable runs and steel ladders being the most
common. The purpose of the cable runs is to hold the wires that connect equipment
together. Some runs are enclosed while others are left open. Often the wires start at a
nineteen-inch rack and are run up the wall in paralel to each other. Once up in the ceiling
the wires are then bent horizontal and run across the ceiling to another wall. The wires are
then bent vertical again and down the wall to the equipment on the other end and
terminated at the end equipment. Sometimes the wire is split off while in the ceiling to
different types of equipment.

i,

P ELCEEEET

Figure9.10
Cablesinacablerun

Metal vs plastic runs and trays

From a noise reduction point of view the completely enclosed steel cable tray is the best.
The stedl box that enclosed the wires is the best type of cable run to protect wires against
external electromagnetic noise. It is OK to leave the top of the box off, but it does reduce
the noise protection of the cable tray. Steel cable runs should be galvanized or painted as
a protection against rust. Probably the most popular type of cable run is the metal ladder.
The ladder cable run is cheap and alows the wires to be easily routed between cable runs.
The cables are often tie wrapped to the rungs of the ladder. The main problem with the

9.3.2

Installation and troubleshooting 167

ladder cable run is that it does not give any protection against external noise. It also may
increase the noise by allowing the wires on the cable ladder to run parallel with each
other.

Plastic cable runs or trays are very popular in industry due to the low cost and ease of
installation. They are often used in cabinets and racks to keep the wires organized and
separate from the equipment.

To reduce the possibility of noise affecting the wiresin either the metal ladder or plastic
cablerunit isbest to:

¢ Run like cables together

e Do not tie wrap cables together on horizontal cable ladders

e Try to keep wires from being run in paralel

¢ Run mains power cablesin their own cable run and separate from other wires

Figure9.11
Plastic cable runs

Vertical runs and trays

Because vertical cable runs are usually short runs, the possibility of noise affecting the
wires is minimal. Therefore, cables are usualy run in parallel up the wall and attached to
a steel cable ladder. The ladder is mounted to the wall close to the equipment and stood
off approximately 25 mm from the wall. The width of the cable run will depend on the
amount of wires needed to be installed. Most of the time the wires are bungled and tie
wrapped together to no more than 100 mm thick. The bungle is then tie wrapped to the
rungs of the ladder in approximately one meter or less lengths.

168 Practical Embedded Controllers

9.3.3

Figure9.12
Vertical cable run

Horizontal runs and trays

As mentioned before the best type of cable run is the sted box. When the steel box is
used in a horizontal cable run it provides the optimal protection against noise from other
cables. The chance of noise being induced from one cable to another is minimized if
different types of cables are placed in their own stedl box cable runs. This becomes
especially important for horizontal cables because they are usualy extremely long. The
cables in the horizontal cable run should not be placed in parallel to each other. The
cables should be placed in a random pattern in the cable run. There is no need to tie wrap
cablesto each other in a horizontal cable tray aslong as they are not going to fall out.

9.4

Installation and troubleshooting 169

@

http://www.baks.com Wi

[T

Figure9.13
Horizontal cable run

Cable ties and mounting

One of the most common problems that can occur with cable ties, with respect to
mounting cables, isincorrect tie wrap tension. The installer either cinches the tie wrap too
tight or it is left too loose. Often it is better to be too loose than too tight. If thetiewrap is
too tight it can kink and damage the wire. This is especialy true for fiber optic cables.
Fiber optic installations should use Velcro tie wraps and which should not be pulled too
tight. For normal cable installations a torque adjustable tie wrap gun is preferred. These
guns come as manual, electric or pneumatically powered. The torque is set according to
the type of wire used and should follow the manufacturer’s recommendations. It is also
important that the mounting device is secure and will not be damaged by the tie wrapping
torque. A dlight tug should be used to check that the wires are secure after being tie
wrapped. Often tie wraps are defective and do not grip. Also when the tie wrap is cut it
should be cut so close to the tie grip that none of the excess tie is exposed. If the excess
tiewrap is exposed it is often very sharp and could cut someone.

170 Practical Embedded Controllers

9.5

Figure9.14
Cable tie connected correctly

Cooling, heating and air conditioning

Excess heat is the most common cause of physical damage. Although technicaly
possible, it israre that equipment is damaged due to excessive cold. Electronic equipment
generates heat and when combined with the ambient heat in an enclosed box, the
equipment can become overheated. An enclosed box with electronic equipment will get
too hot no matter where it is located. Unventilated equipment in the Arctic can fail. It is
then often necessary to cool the equipment. This can be done with fans, air conditioning
or evaporative cooling. Fans are often used when equipment is located in air-conditioned
buildings or if it is not possible to air-condition the equipment enclosure.
To keep the equipment cool the following rules should be followed

Equipment should not be placed in direct sunlight
The temperature should be monitored if possible
All equipment should be ventilated

Some type of cooling should always be used
Filters should be checked regularly

Figure9.15
Good air-conditioning

9.6

Installation and troubleshooting 171

Wire management in a cable run

One problem that is often over looked in the design and installation of equipment is the
installation of equipment so that it can be repaired later. Often the designer or instaler is
not the person that has to repair the equipment. It is important to install the equipment so
that the repairperson can easily gain access and replace the device if necessary.

A few common problems that can happen in the installation of equipment are:

Too many wiresin acable run

Wiresinstalled over the top of connectors

Spliced cables in the cable run

Equipment installed on top or too close to other equipment
Equipment installed too close to the floor or ceiling

Cable markers not used or loose

Lack of incorrect documentation

Too many cables in the cable run often happens as wires are added a little bit over time.
As more and more cables are installed the cable run gets fuller and fuller until it is
impossible to get to the bottom cables. Lots of small cable runs are usually better than one
large cable run.

As equipment is added to an installation it is often easy to install wires over existing
equipment or connectors. Sometimes the wires can be moved to get at the equipment
underneath, but often the repairperson must remove the equipment on top first. This can
cause even more problems for the repairperson.

In my opinion instalers should NEVER splice wires. If the wire is not long enough
during the installation, the wire should be pulled out and replaced with one that is long
enough. Since about 60% of problems with equipment are due to bad connections, it is
important to limit the number of connections. A splice is just another possible bad
connection. Often it is hard to find these splices when they go bad as they can be hiding
in the cable run.

Equipment should be spaced out when mounted in a box. If the devices are located too
close it is sometimes impossible to connect or disconnect wires or equipment. If
equipment is mounted in 19-inch racks, the racks should be located where it is easy to get
to the front and back of the equipment. Not only is equipment that is badly located often
hard to repair but it can be dangerous to the technician or engineer.

If equipment is installed too close to the floor or ceiling it can be very difficult for the
repairperson to gain access to the equipment. This could be an annoyance for the
repairperson but also could be dangerous. Typically equipment is located between eye
and knee level. The equipment should also be accessable from the back if possible.

The proper cable markers for the job should be installed correctly on both ends of the
cables. These numbers should be noted in the documentation. The cable markers should
be located where the repairperson can see them, but not where they can be knocked off or
affected by heat or other environmental situations.

It is becoming less frequent that an installation is undocumented. The instaler is
usually required by the contract to document the complete installation. The problem with
most documentation is that it is written from the installer’s point of view instead of from
the technician’s point of view. The installer should document the installation as though he
or she was going to repair the system. Colors of wires used, where they go and how they
get there is very important, but any changes or unusual installation practices should be

172 Practical Embedded Controllers

documented or noted by the installer. Thisis especially true if the installer knows that the
repairperson may have a problem later because of the installation.

Figure9.16
Cable markers

9.7 Condulit installation

As mentioned before plastic cable runs are becoming more popular than steel cable trays
and the same thing is happening in conduit. Because the installation is easier and it costs
less, the electrical industry is moving to plastic continuous tubing or conduit. When the
distance is long, it can be difficult to install the wires through the conduit. It is often
easier to insert the cables into the conduit before the conduit has been installed, but it is
possible to insert the wires afterwards. Getting the wires through the conduit can be
accomplished by first connecting a small plastic grocery type bag to the wires. A vacuum
cleaner is then connected to the other end of the conduit and turned on. The vacuum
created in the conduit draws the plastic bag with the wires attached through the conduit. It
may be necessary to insert liquid soap into the conduit to facilitate the movement of the
plastic bag and wires. It is best to use smooth walled plastic conduit.

9.8

Installation and troubleshooting 173

http :/Avww railway-technology.com

Figure9.17
Conduit

Once the wires have been pulled through the conduit, it can be mounted or buried. If the
conduit is being mounted, it should be placed out of direct sunlight if possible. If the
conduit is placed out of doors, special UV resistant conduit should be used. If the conduit
is mounted on equipment or walls it should be placed where it will not interfere with
persons or other equipment. Plastic conduit should never be installed where it can be trod
on by anyone. Conduit should be placed under a path rather than over, if it is to cross a
walkway. If the path is a concrete pad on the ground, a water hose can be used to blow a
hole under the concrete and then the conduit pushed under the concrete.

Troubleshooting techniques

In some ways it is difficult to define how to troubleshoot a piece of equipment. Thisis
because every device is different. But having said that, there is a common method that
most experienced troubleshooters use. The first thing the troubleshooter doesis find out if
the equipment has ever worked. There is a big difference between a device that suddenly
fails and one that has never worked. If a device just stops working then there is usually
only one problem. If it has never worked there may be tens or even hundreds of problems.

If the device has simply stopped the troubleshooter might check (in order) the following
possible problems:

Is there power to the equipment?

If there is power, isthere any smoke? (don’t let the smoke out)

Arethe proper lightson, if any? If not, why not?

Turn the power off and check the connections. Are any loose? Fix them.
Turn the power back on.

Now that the power is back on isit working correctly? No, then go on.
Is anything unusually hot?

174 Practical Embedded Controllers

9.9

o If not, thisisthe time to get out the schematics and manuals.

e Separate and test different sections and sub systems.

e Starting in the middle of the device, divide the device in half functionally
while testing each sub-system until the problem is found.

o Fix the problem. Does it work? If not start back with number 1.

| have seen an experienced troubleshooter spend hours trying to find a problem and
then realize that the equipment is unplugged. Don't skip any steps.

Safety considerations

Safety should always come first on al instalations. It is better that the job is not done
than someone gets hurt or injured. If you think it is unsafe to do ajob then refuse to do it.
Most accidents happen because people do things they know are wrong and they get
complacent. Doing something the unsafe way a hundred times may not cause an accident,
but sometimes doing something wrong once causes an accident. It is up to the safety
officer to remind people of potential accident situations, but it is up to everyone to
prevent accidents.

Every job should have a safety officer. It is his or her job to help the employees on the
job to reduce accidents.

This can be accomplished by doing the following:

Follow company safety requirements

Identify any unsafe situations or practices

Have afirst aid kit on hand

Educate and remind employees of unsafe situations or practices
Verify that you have the proper safety equipment

Think safety!

Figure9.18
Safety first

9.10

Installation and troubleshooting 175

Obviously the most common safety issue in the electronics field is electricity. A very
small current (50 mA) can kill. It is very important to make sure that the power is off
before working on equipment. Although this sounds simple, it is surprising how many
people die every year from being shocked. The main problem is that electricity is
invisible most of the time. It is a good idea to carry a voltage stick that indicates the
presence of high voltage. Place the voltage stick next to the wires or equipment before
touching it. The voltage stick is a non-contact high voltage-sensing device available in
most electronic stores. When high voltage is sensed the voltage stick lights up. It isavery
cheap and easy device to use and it could save your life.

Conclusion

Installation of electronic equipment is changing every day due to the huge amount of
innovations happening in the electronics industry. The good thing is that some things
change very little if at all. In the past steel conduits and cable runs were used because of
safety reasons, but now they are being used because of noise problems. Screw, crimp and
solder connections have been around for along time. They are still being used in the same
way and little has changed. Screw connectors are increasing in popularity and therefore it
is necessary to understand the correct way to install them. We are soldering connections
less and less, but there are still times when it is required.

Bad connections cause a high percentage of problems with electronic equipment. This
is usually because of poor installation practices or external forces. Some of the things that
can cause failures are, vibration, extreme hot and cold, insufficient tightening of screw
connectors and incorrect installation techniques. By following proper and good
maintenance procedures, failures can be greatly reduced. Scheduled visual and
mechanical checks should be done often. Besides mechanical failures, another installation
problem can be noise coupled to the wires through poor installation of cable runs or trays.

Enclosed steel cable runs are the best from a noise point of view. Plastic or open cable
trays give no protection against externally radiated noise. The chance of noise coupling is
higher if wiresarelaid in parallel for long distances. Tie wrapping cables together adds to
the possibility of noise coupling. Also, if the tie wraps are too tight they can damage the
wire. Torque tie wrap guns are used to fasten the tie wrap and therefore reduce potential
damage.

Good installation practices will aways be subjective and often if the installation looks
good then it is assumed that it is a good installation. This is not necessarily true. Parallel
wires look good, but can cause so much noise coupling that the system may not work. A
good looking system that doesn’t work isn’t good for anything. Functionality is always
second after safety in any installation. But having said that, it is still possible to have a
neat, safe and tidy system that works correctly. Clean installations are usually safer and
more reliable than messy ones.

10.1

10.2

End notes

Conclusion

The world of microcontrollers has long been shrouded in mystery because of the public’s
perception of complicated computers. It was not long ago that most people thought you
had to be a genius to even operate a computer. The personal computer and the Internet
have put an end to that. Now we see grandparents E-mailing their grandchildren and
children using computers every day in school. The mystery has passed and we are better
for it.

A similar thing has been happening within the electronics industry. The use of
microcontrollers has been very specialized, but now we see a huge expansion of the use
of microcontrollersin the form of PLCs, DCSs and Data Loggers. These microcontrollers
are extremely easy to use and are becoming more dependable every day. By
understanding the inter-workings of microcontrollers we have a better feel for how and
what these controllers do. When things go wrong we then have a better awareness of the
methods for troubleshooting and repairing controllers. As mentioned in the preceding
chapters microcontrollers can stop running for seemingly no apparent reason. It was
shown that high voltage or static could cause a poorly designed microcontroller to freeze
up. We also saw how this problem can be minimized by watchdog timers and filling the
unused programming area of a microcontroller with NOPs and JSRs instructions. It is
hoped that this book and the course that goes with it has de-mystified the world of
microcontrollers for the reader.

CPU design and functions

This book was never written as a microcontroller design manual. The design of
microcontroller systems though can be understood and even done on a simple level by
amost anyone. We saw how the central core of the microcontroller was the CPU. The
CPU implements the instructions contained within the program. The program lives in a
variety of places including the RAM, EPROM and EEPROM. These memory devices not
only hold the program but also the temporary data, input results and output information.

10.3

End notes 177

The program carries out arithmetic and logic functions using the input and output data
that is held in its database. This data may have to be transferred to another
microcontroller. This transfer is done on some type of communication system. It was seen
that some microcontrollers like the 68HC11 have synchronous and asynchronous
communication ports on board. For parallel communications the microcontroller uses one
of the parallel ports supplied on the microcontroller. We found that these ports are either
unidirectional or bi-directional. And that they can be controlled by registers in the
microcontroller. The program places the values that are needed to control the port into the
relevant control register. The ports can be configured in thisway to be either an input port
or output port.

Figure10.1
CPUs

Assembly language programming

It is not necessary to understand assembly language programming (thank God) to use a
microcontroller. But having alittle bit of information on the way that microcontrollers are
programmed can help us to understand the inter-workings of devices like PLCs and
DSCs. The programmer uses instructions to tell the microcontroller what to do. A group
of these instructions becomes a subroutine. A program is a group of linked subroutines
written to accomplish the tasks defined in the specifications. It is best if the programmer
creates aflow chart before starting the coding. The coding is the act of writing the code or
instructions in the subroutines and the best subroutines are those that are completely
stand-alone. That is, they are not dependent on the values taken from another subroutine.
In awell-written program the subroutines can be moved around within the program with
no effect to the function of the program.

Most programmers use BASIC or C++ to program microcontrollers. These high level
languages are used because they are convertible and easier to program than assembly
language. C++ also has the benefit of making low-level changes while at the same time
being a high level language. As memory becomes cheaper and smaller, the use of C++
and other high level languages will increase. The problem with using high level
languages is that they use alot of memory.

178 Practical Embedded Controllers

10.4

10.5

Memory

RAM, EPROM and EEPROM s are used within the microcontroller system to hold data.
The amount of memory included in microcontrollers is minima and often less than is
needed by most projects. Often designers have to add external chips to increase the
memory so that it is large enough for the project. Battery backed RAM or EEPROMSs are
the most popular. The biggest difference between these two types of memory devices is
the way they are programmed. Although the end result of using either RAM or
EEPROMs in the microcontroller system is the same, the battery backed RAM is more
susceptible to being spiked than the EEPROM. Therefore, the EEPROM is safer to usein
potentialy static or high voltage areas. The battery in the RAM will eventually drain and
the RAM chip will need to be replaced. The battery islarge and it takes up more room on
the PCB than a normal RAM or EEPROM. The EEPROM is harder to program than the
RAM and only has about 10 000 write cycles before it becomes unstable. Often designers
put both of these chips on the PCB.

[

UT6264PC-70LL

[0 IR BN)
LR T)

®

i-----nnl}

- e o o

=« FE B R R E R EERERBEER |

Figure10.2
CPU, BUFFER, RAM and EPROM

Inputs and outputs

A microcontroller that could not talk to the outside world would not be of much use.
When defining or troubleshooting microcontroller 1/0 systems it is very important to
understand the benefits and drawbacks of single ended and differential systems. Both
analog and digital circuits are affected differently when they are connected single ended
or differentially. The designer should understand that building an analog single ended
circuit might be cheaper in the short run, but more expensive when the system doesn't
work. Whereas differential analog circuits may be more expensive in the beginning, but
will have a better chance of working than a single ended system. Digital inputs are
different from analog circuits. Most digital inputs are connected in a single ended method.
But switched digital inputs have their own requirements such as switch de-bounce.

There are three ways to control electronic devices, digital output, analog output and
high speed switching. Either relays or transistor are used to turn devices on and off. The
microcontroller puts a one or zero in aregister that tells the relay to activate the device.

10.6

End notes 179

This type of control is very popular because it is ssmple and easy. But often the engineer
needs to control an analog device. The most common way to control an analog device
today is with digital switching. Digital switching control is used because it is more
precise and gives the programmer extreme control. Two devices that are used to read and
write to a microcontroller are the LCD display and a keypad. The keypad is scanned by
first placing zeros one at atime on the rows of the keypad. The columns are then read and
the result translated into ASCII characters. When the programmer wants to output data
that can be read by the user, ASCII characters are placed in the LCD register. The
contents of the register are then displayed on the LCD. Most LCD displays have
microcontrollers on board and can be considered smart devices themselves.

Figure10.3
LCD display

Data communication

Stand-alone devices have limited usefulness. The real power in a system isin connecting
the devices together in a network of some type. When devices are connected together they
can share resources and be accessed from one location. Often in troubleshooting a system
the most cost and time is involved in traveling to the location. With networked systems
the technician or engineer can access remote devices with radio, wires or even with a
mobile phone. The Internet will allow anyone, with permission, to control and monitor a
device from anywhere in the world. Since data communications has become such an
important part of microcontroller design and troubleshooting, the need for systems like
Ethernet and RS-485 have increased.

As long as we are using serial data transmission as the main method of long distance
communication languages like ASCII and hex will be used to allow easy interpretation of
the data. Voltage standards like RS-232, -422 and -485 will continue until replaced with
more complicated systems such as Ethernet, Firewire and USB. The protocols that are in
use today are often fieldbus protocols. These protocols define the rules on how the
devices talk to each other. Overall protocol methods like master/slave, CSMA/CD and
Tokenbus are the most popular methods of controlling the conversation. These methods
have been incorporated into fieldbus systems like Modbus, Profibus and Foundation
Fieldbus. With the increasingly popular communication medium of fiber optics, there will
be huge changes in the way we do data communications in the not too distant future.

180 Practical Embedded Controllers

10.7

Figure10.4
Ethernet

Noise reduction

Noise reduction is very important from both a design and a troubleshooting point of view.
It is the designer's job to design systems that not only are resistant to noise, but also
radiate as little noise as possible. The troubleshooter needs to understand both the cause
of noise problems and the best way of reducing noise in their systems. Noise is usually
coupled into a system through the wiring. This makes it important for both the designer
and troubleshooter to give a lot of attention to things like wiring methods and location.
The location of the wires can have a great impact on how much noise is coupled from one
system to another. When wires from one system lay in parallel with wires from another
system, they can very easily couple noise into each other.

Noise reduction is a very important factor in PCB design. The main weapon that we
have in the reduction of noise, both created and induced, into a PCB is the ground plane.
The ways power and common grounds are laid out on a PCB have changed in the last few
decades. Countries around the world have enacted legisation to require manufacturers to
follow guidelines to reduce radiated noise from PCBs. Often these same rules not only
reduce radiated noise, but also reduce the amount of noise being induced into the digital
or analog circuit. Segregation of sub-systems on the PCB and Faraday boxes also goes a
long way to reducing emitted and induced noise. Analog systems should be separated
from digital circuits and a Faraday box should surround high noise producing systems.

Figure 10.5
Noise reduction on a PCB

10.8

10.9

End notes 181

Grounding solutions

Earth grounding is used to reduce noise on PCBs and systems by supplying a better return
path for potential noise. It is better from a noise position that high currents and voltage
spike return to ground than be induced into our circuit. One problem with ground isthat if
high noise sources are physically close to our circuit, the noise can be coupled through
the ground connection into our circuit. Therefore, every ground connection should be
looked upon as a potential noise injection point and not a black hole for noise. The most
common earth grounding system is the parallel single point ground, but there are
modified versions. The digital and analog commons on the PCB are usually connected
together at a single point and then connected to earth ground. A professional should
always do this as often these commons have different voltages as referenced to earth
ground.

Lightning protection costs the industry millions of dollars a year in damaged
equipment. Therefore, reducing lightning damage has become high priority in the quest
for better working systems. Lightning damage reduction usualy takes the form of
lightning rods and some type of earth grounding system. The most common of these is
the trenched cable method. This is where an unshielded cable is buried in trenches around
the building or antenna tower. The lightning rods are connected to the earth grounding
system by way of aluminum tubing running up the side of the building or tower. Often a
combination of spiked and trench cable earthing is done to increase the quality of the
earth ground.

Figure 10.6
Ground

Installation techniques

Installation of egquipment can be looked upon from many different directions. The user,
designer, installer and troubleshooter all look at the installation differently. The good
designer views the installation from all angles and from everyone's point of view. The
user wants controls that are easy to operate and reliable, the installer wants a good clean
professional installation and the troubleshooter wants to be able to get to the equipment

182 Practical Embedded Controllers

10.10

and repair it if necessary. The most common problem in electronic equipment is the bad
connection. Whether the connection is a screw, crimp or soldered connection, the
connection can fail. A proper installation of these connections will reduce the possibility
of failure later on in the life of the equipment.

Noise is another common problem that is encountered in electronic systems. Proper
installation of cablesin steel trays and ladders can reduce the coupling of noise from one
wire to another. Often the problem with the system is not the installation but the type of
materials that are specified for the job. Plastic cable trays and open ladder runs do nothing
to limit noise being transmitted from one wire to another. Whereas enclosed steel cable
trays will reduce substantially the noise coupled from one system to another through the
wiring. The noise reduction of steel cable trays or conduits can be enhanced if the
different types of cables are segregated according to their respective types of signals.
Digital inputs and especially outputs should be kept away from analog signals. And mains
power cables should be kept away from everything.

1181 1an30mA [E]5 pmm
20 A 50Hz 240V am

kA I

o oM
A%
|)58
| L
o o
| pessEww

" i atery smtcn st v 0 :
POWER 'POWEHjLIGHT _ 0 el ruskar

acoroval N - N11SCH
AD 023D 104211

Figure 10.7
Mains power

Final words

Understanding embedded controllers can help anyone that comes into contact with the
myriad of microcomputer-controlled equipment available today, do their job better. One
problem that happens in any industry is that people often become experts in their field,
but have limited information about other fields. Since al systems are dependent on
multiple disciplines, it is important for everyone involved in the system to have a bit of
understanding of the other fields involved. If nothing else is gleaned from this book, it is
hoped that the reader has received a different point of view of embedded microcontroller
systems. It is aso hoped that this book has taken some of the mystery out of embedded
controllers.

PRACTICAL 1

Setting up the 68HC11 emulator
board

Introduction

The evaluation board that is available with IDC Technologies and on which this practical
is based is specially designed for use as a development unit for university students. It isa
very powerful tool for learning how embedded controllers work and are programmed. It
is a very functional device and has most of the bells and whistles that are found on more
expensive systems. The unit has the ahility to receive a program from a terminal package
and then run that program from RAM on the EVM board. An LCD display is attached to
let the user see data sent from the program. It also has a keypad that lets the user input
data into the program. This EVM unit is not a toy, but a completely useful development

board.

Safety first

When working with this EVM board it is important that the user follow some simple

safety rules:

¢ DO NOT PLUG IN THE POWER to the unit until you have checked that

theinstallation is correct.
e USE THE ANTI-STATIC WRIST STRAP provided.

Setup

o Attach the anti-static strap to your wrist

e Remove the EVM from its case or box

e Install the LCD display in the connector as shown in Figure A1
¢ Do not install the keypad yet

184 Practical Embedded Controllers

FigureAl
LCD installation (Note; Pins are on the | eft)

Switch and jumper setup

¢ Verify that the switches are setup as shown in Figure A2
o Verify that the jJumpers are set as shown in Figure A2

e Switch 2 should be on, all others should be off

o Jumpers should be on switches 1, 2, 5and LEDs 1, 2, 5
¢ |gnore the numbers on the PCB under the jumpers

¢ Count the switches and jumpers from the left

IR,
Q= v e =

Figure A2
Switch and jumper settings

Installing the RS-232 cable

o Ingtall the RS-232 into the computer
¢ Ingtall the RS-232 into the breakout box
¢ Ingtall the breakout box into the EVM board as shown in Figure A4

Practical 1: Setting up the 68HC11 emulator board 185

y A1 ¥ (R

Figure A3
Keypad installation

Figure A4
Breakout box (yours may ook different)

Power up

¢ Plug in the power supply into the EVM board but not the mains supply

¢ Plug in the power supply into the mains

e Does one red LED light and the LCD display show a row of black sguares
as shown in Figure A5?

186 Practical Embedded Controllers

Figure A5
LCD display after power on

Loading the software

Start the computer and after it has booted up into Windows and run the program called
Hyper-terminal from the icon on the screen or under accessories if there is no icon. When
Hyper-terminal is booted up the screen should look like...

Connection Description EE |

0k Cancel |

Figure A6
Hyper-terminal setup screen

Add the HC11 and choose an icon and then click OK. Follow the setup screens as
shown below as setup as shown.

Practical 1: Setting up the 68HC11 emulator board 187

Connect To EE |
Q‘? HC11

Enter detailz far the phone number that you want b dial;

Countryregion; I.ﬁ.ustralia [E1] j

Area code; IEIB

Phone number; I

Connect using:

Figure A7
Set communication port to comm 1

COM1 Properties |

Fart Settings |

Bits per second:

Drata bits: IB j
Paritu: IN.:.ne j
Stop bitz: I‘I j

Lo

Elaws contral; INu:une

Advanced... | Bestore Defaulkz |

()% I Cancel | Smmly |

Figure A8
Comm port setup

188 Practical Embedded Controllers

HC11 Properties 7] |
Connect To Settings I

— Function, arow, and chil keys act az

% Teminal keys windows keys

— Backzpace key sends
& Cul+H " Del ¢ Cul+H,Space, Cil+H

E mulation;

I,.f_-.,ut.;. detect vI Terminal Setup... | Colors... |

Telnet terminal 1D:]

Backzcroll buffer lines: IEEIEI ﬁ

IV : Blay sound when connecting or disconnecting

[Exit program upon disconnecting

ASCI Setup... |

] 4 I Cancel |

Figure A9
Terminal setup

ASCIl Setup HE|

— ASCH Sending

[T Send line ends with line feads

[~ Echotyped characters locally

Line delay: IEI millizeconds.
Character delay: IEI milizeconds.

— A5C Receiving

[T Append line feeds to incoming line ends
[~ Force incoming data to 7-bit ASC
¥ ‘wiap lines that exceed terminal width

Cancel |

Figure A10
ASCII transfer setup

Sending a program to the EVM

Practical 1: Setting up the 68HC11 emulator board 189

Press the RESET button on the EVM and the following line should be displayed in
Hyper-terminal.

«" HC11 - HyperTerminal

File Edit “iew Call Transfer Help

E
BUFFALO 3.2 <(int)> — Bit User Fast Friendly Aid to Logical Operation_
|
Connected 0:03:38 Auto detect 9600 8-M-1 |SCF|DLL |D‘-\F‘S |NUM |Eapture |Print echo i
Figure A1l

Hyper-terminal front screen

Type LOAD T and then pressENTER.
Click on the Transfer menu and then choose Send Text File.

,‘ HC11 - HyperT erminal

File Edit “iew Cal Transfer Help
Send Text File

Ll iy [x|« & ek E- E
=] LCD
File name: I j Open |
Files of type: | Test file (=TT =l Cancel | L
[Connected 0:01:32 |Auto detect [36008-N-1 [SCROLL |CAPS [NUM [Capture |Print echo _é
Figure A12

Sect LCD file

190 Practical Embedded Controllers

Double click the program LCD.TXT. When the program is done loading type G C000
and then press the ENTER key. The display should change to the IDC test program as
seenin Figure A13.

Does the display show the IDC test sequence characters?

Figure A13
Successful completion of the practical

Congratulations! Y ou have loaded and run your first embedded controller program.

PRACTICAL 2

Activating LEDs on the EVM

Objective

This practical will introduce you to programming the 68HC11 microcontroller by
showing how to turn on some LEDs in software. The practical is donein three steps. First
you will enter the code as written below into the assembler program. Next or at the same
time the comments will be added to the program. Finally you will load and run the
program using the EVM board.

Writing the program

Click on the assembler program icon. Create a new file by clicking on the new file icon
on the top menu. Type in the program exactly as written below. Add the appropriate
comments to the right of each line. Comments can be added as it is being written or after
it is completed. The comments should be short but include sufficient information on what
that line is trying to accomplish. Do not just repeat the instruction. Two examples of
comments of an instruction could be...

LDAA #$39 Load A with $39

Thisis not avery good comment. It just repeats the instruction. A better one would be.

LDAA #%$39 Load the ASCII character 9
Or even better
LDAA #$39 Load character 9 ASCII in Accumulator A

Remember that the comments are there so that anyone can understand what the
instruction istrying to do.

Capitalization does not matter, but the spacing of instructions is very important. The
names for lines, such as START below, should aways be placed on the far left-hand side
of the page. Place one tab space (at least 8 spaces) between the line name and the

192 Practical Embedded Controllers

instruction. If there is no line name then put 2 tab spaces. There should be at least 1 tab
space between the instruction and the operand of the instruction if any. There should be at
least 2 tab spaces between the operand and the comment. Stars (shift 8) are used to
indicate a comment line and to separate different parts of the program. The comment lines
are not loaded into the microcontroller.

hhkkkhkhkhkkhhkhkhhhhkhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhkdhhkhhkdhhkxxdx%

* WRITTEN BY - JOHN M. PARK
* DESCRIPTION - IDC LED TEST
* DATE - 6/01

khkkkhkkhkkkhkkhkkhkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkhkhkhkhkhkhkkhkhkhhkhkkhkhkhkhkkhkhkhkhkkhkhkhkkkhkhkhkkkhkhkhkkkkkhkkk*x*%

* PROGRAM TO TURN ON SOME LEDS
*$1009 PORT D DATA DIRECTION REGISTER
*$1008 PORT D = LEDS

khkkkhkkhkkkhkkhkhkhkkhkhkhkhkhkhkhkhkhhkhhkhkhhkhhhkhhkhhhkhhkhhkhkhhkhhhkhhkhhkhkhhkhkhkhkhkhkkhkhkhkkkkhkhkhkkk*x%

ORG $C000
LDS #47
EE R R R S PR R LR R L LR LR R R L LR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R TR
LDA #$34
STA $1009
START LDA #$00
STA $1008
JSR $FFB8 BUFFALO Instruction! What does it do?
JSR DELAY
LDA #$34
STA $1008
JSR DELAY
JSR START

khkkkhkkhkkhkkhkhkhkhkhkkhkhkhkhkhkhhkhhkhhkhkhhkhhhkhhkhhhkhhkhhkhkhhkhhhkhhkhhkhkhhkhkhkhkhkhkhkhkhkkkkhkhkxkx%x%

*DELAY FORLCD

khkkkhkkhkkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkhkhkhkhkhkhkkhkhkhhkhkkhkhkhkhkkhkhkhkhkkhkhkhkkkhkhkhkkkkhkhkhkkkhkhkhkkkkkhkkk*x*%

*DELAY LOOP - INDEX REGISTER X - 2 =1 SECOND (approximate)

kkkkhkhkkhkkhhkhhkkhhkhhhhhkhkhhhhkhhhhhhkhhhhkhkhhhhkhkhhhhhhhhhhkhhhdhkhkhhdkdhdkhhkdhkdkxkx%

DELAY LDY #$FFFF

LDX #$0002
LOOP DEY

CPY #$0000
BNE LOOP
DEX

CPX #$0000
BNE LOOP
RTS

kkkkhkhhkkhkhkhhkkhhkhkhhhhkhhhhhkhkhhhhhhhhhhkhhhhkhkhhhhhhhhhhkhhhdhkhhhhkdhkhkhhkdkdkxx%x%

Loading the software

NOTE: if you have setup Hyper-terminal in the previous practical, then skip down to
SENDING A PROGRAM TO THE EVM.

Start the computer and after it has booted up into windows and run the program called
Hyper-terminal from the icon on the screen or under accessories if there is no icon. When
Hyper-terminal is booted up the screen should look like...

Practical 2: Activating LEDs on the EVM 193

Connection Description HE |

Cancel |

FigureB1
Hyper-terminal setup screen

Add the HC11 and choose an icon and then click OK. Follow the setup screens as
shown below as set up as shown.

Connect To EHE

Q‘? HC11

Enter detailz for the phone number that you want to dial:

Cauntryregion: I.-'l'«ustralia (E1] j

Arga code: IEIB

Phone number: |

Connect uzing:

Figure B2
Set communication port to comm 1

194 Practical Embedded Controllers

COM1 Properties K EE |

Fuort Settings I

9600

Bitz per zecond:

Drata bits: IE j
Parity: IN.:.ne j
Stop bits: |1 j

L

Flowe contral: INDne

Advanced... | Restore Defaults |

(1] 9 I Cancel | Spply |

Figure B3
Comm port setup
HC11 Properties EH |
Connect To Settings |
— Function, arrow, and ctil keys act az
% Teminal keys = windows keys
— Backzpace key zends
% Chl+H 1 Del Chl+H, Space, Chri+H
Emulation:
I""""‘t':' detect vI Tierminal Setup,. | Colors. . |
Telnet terminal ID: ~ [ANS]
Backscroll buffer lines: |5EIEI j
[V i Play sound when connecting or disconnecting
[Exit program upon disconnecting
ASCI Setup... |
(] I Cancel |
FigureB4

Terminal setup

Practical 2: Activating LEDs on the EVM 195

ASCI Setup EHEl
— ASCIH Sending

[T Sendline ends with line feeds

[~ Echo typed characters locally

Line delay: IEI millizeconds.
Character delay: IEI millizeconds.

— ASCI Receiving

[T tppend line feeds to incoming line ends
[” Eorce incoming data to 7-bit ASCII
W wirap lines that exceed teminal width

Cancel |

Figure B5
ASCII transfer setup

Sending a program to the EVM

The first step in sending a program that you have written to the EVM is to save the
program by going to ‘save as' under the file menu in the PF32 program. Save the program
asLED.ASM. If thereis afile by that name aready in the directory, write over it.

Send Tesxt File K E
Laak jr j = |‘=j‘ Ef-
File name: I j Open I
| Files afiipe [Text i (-TT) =] Cancel /l
%
Figure B6
PF32 screen

After the file has been saved click on the DOS button and type ASM11 LED.ASM.
This will compile the program into different formats. One of the formats will be a .S19
file. Thisfile has the code that you will send to the EVM. Unfortunately the .S19 format
is not compatible with Hyper-terminal. While still in DOS change the extension of the
.S19 fileto .TXT. Thisis done with the following command.

196 Practical Embedded Controllers

REN LED.S19 LED.TXT

Using the ALT TAB change to the Hyper-terminal program.

Press the RESET button on the EVM and the following line should be displayed in
Hyper-terminal.

& HC11 - HyperTeminal
File

Edit View Cal Transfer Help
DE &8 08| e

BUFFALO 3.2 {int> - Bit User Fast Friendly Aid to Logical Operation_

Connected 0:03:38 Auto detect 3600 8-N-1 SCROLL [caPs [NUM [Capture [Frint echo _/
FigureB7
Hyper-terminal front screen
Type LOAD T and then press ENTER.
Click on the Transfer menu and then choose Send Text File.
The screen should changeto
Send Text File K E3
Ll T [e s
[EIED
File name: I j Open I
Files of tupe: [Tewtfile (- TT) =] Cancel /|
74
Figure B8
LED.TXT

Once the program is loaded, run the program by typing the following.
G C000

The LEDs on the LCD screen should now start flashing.

PRACTICAL 3

Reading switches on the EVM

Objective

This practical will introduce you to programming the 68HC11 microcontroller by reading
a switch and toggling a LED. The practical is done in three steps. First the delegate will
enter the code as written below into the assembler program. Next or at the same time the
comments will be added to the program. Finally you will load and run the program using
the EVM board provided.

Writing the program

Click on the assembler program icon. Create a new file by clicking on the new file icon
on the top menu. Type in the program exactly as written below. Add the appropriate
comments to the right of each line. Comments can be added as it is being written or after
it is complete. The comments should be short but include the information on what that
line is trying to accomplish. Do not just repeat the instruction in the comments. Two
examples of comments of an instruction could be...

LDAA #$39 Load A with $39

Thisis not avery good comment. It just repeats the instruction. A better one would be.

LDAA #3$39 Load the ASCII character 9
Or
LDAA #$39 Load 9 ASCII in Accumulator A

Remember that the comments are there so that anyone can understand what the
instruction istrying to do.

Capitalization does not matter, but the spacing of instructions is very important. The
names for lines, such as START below, should aways be placed on the far left-hand side
of the page. Place one tab space (at least 8 spaces) between the line name and the

198 Practical Embedded Controllers

instruction. If there is no line name then put 2 tab spaces. There should be at least 1 tab
space between the instruction and the operand of the instruction if any. There should be at
least 2 tab spaces between the operand and the comment. Stars (shift 8) are used to
indicate a comment line and to separate different parts of the program. The comment lines
are not loaded into the microcontroller.

hhkkkhkhkhkkhhkhkhhhhkhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhkdhhkhhkdhhkxxdx%

* WRITTEN BY - JOHN M. PARK
*
* DESCRIPTION - IDC SWITCH TEST
*
* DATE - 6/01
khkkkhkhkhkkhhkhkhhhhkhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhkhkhhkkhhkhhkhhkhxkxdx%x
* PROGRAM TO TURN ON A LED USING A SWITCH ON THE EVM
* NO DEBOUNCE
khkkkhkhkkkhkhkhhkhkhhkhhhhhkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhdhdkhhdkdkdkxx%x%
ORG $C000
LDS $47
khkkkhkhkhkkhkkhkhhkkhhkhhhkhhkhkhhhhkhkhhhhkhhhhhkhkhhhhkhkhhhhdhkhhhdhhkhhhdhkhkhhkdhdkhkhkdkdkxx%x%
LDAA #$10
STAA $1009
LOOP LDAA $100A
STAA $1008
LDX HSFFFF
LOOPL DEX
CMPX #$0000
BNE LOOPL
JSR LOOP
RTS

khkkkhkhkhkkhkhkhkhhhhkhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhkkhhkhhkkhkhkhxkdx%x

Loading the software

NOTE: If you have setup Hyper-terminal in the previous practicals, then skip down to
SENDING A PROGRAM TO THE EVM.

Start the computer and after it has booted up into Windows and run the program called
Hyper-terminal from the icon on the screen or under accessories if there is no icon. When
Hyper-terminal is booted up the screen should look like...

Practical 3: Reading switches on the EVM 199

Connection Description H |

FigureCl1
Hyper-terminal setup screen

Add the HC11 and choose an icon and then click OK. Follow the setup screens as
shown below as set up as shown.

Connect To EE |

HC11

Enter detailz far the phone number that you want b dial;

Countryregion; I.ﬁ.ustralia [E1] j

Area code; IEIB

Phone number; I

Connect using:

k. I Cancel

Figure C2
Set communication port to comm 1

200 Practical Embedded Controllers

COM1 Froperties EH |

Fart Settings I

9600

Bitz per second:

Lrata hits: |8 j
Parity: IN.:.ne j
Stop hits: I‘I j

L

Flow contral: INDne

Advanced... | Restore Defaults |

0K I Cancel | Apply |

Figure C3
Comm port setup
HC11 Properties K E |
Connect To Settings |
— Function, armow, and ctil keys act as
= Teminal keys windows keys
— Backspace key zends
& Chl+H Del ¢ Chl+H, Space, Chil+H
Ermulation:
I,.i-.,ut.;. detect vI Tierminal Setup... | Colars. . |
Telnet terminal ID:~ |ANS]
Backzcroll buffer lines: |5EIEI j
IV Play sound when connecting or disconnecting
[T Exit program upon disconnecting
ASCIl Setup... |
Ok I Cancel |
FigureC4

Terminal setup

Practical 3: Reading switches on the EVM 201

ASCII Setup HE|

— A5SCI Sending
[T Send line ends with line feeds

[~ Echo typed characters locally

Line delay: IEI millizecondz.
Character delay: IEI millizeconds.

— A5SC| Receiving

[T &ppend line feeds to incoming line ends
[T Force incoming data to 7-hit ASCI
¥ ‘wiap lines that exceed terminal width

Cancel |

Figure C5
ASCII transfer setup

Sending a program to the EVM

The first step in sending a program that you have written to the EVM is to save the
program by going to ‘save as' under the file menu in the PF32 program. Save the program
as SWITCH.ASM. If thereis afile by that name already in the directory, write over it.

's File Editor
ns Templste Execute Macro window Help

[P N P [

SWITCH.ASM

\
m
>]

WRITTEN BY - JOHN M. PARK

DATE - 6/01

PROGRAM TO TURN ON A LED USING A SWITCH ON THE EUM

be
[
=
=
* DESCRIPTION - IDC SWITCH TEST
=
=
=
* NO DEBOUNCE

ORG $cooo
LDS $oeu7

LbA #3510
STA $1009
START JSR DELAY
JSR START

* DELAY LOOP- READ SWITCH 5 — WRITE TO LED 5

#SFFFF

LDY

[nicat | 32 | WA| [RecOi [Nawrep|DOS (NS | [cap
Figure C6
PF32 screen

After the file has been saved click on the DOS button and type ASM11 SWITCH.ASM.
This will compile the program into different formats. One of the formats will be a .S19
file. Thisfile has the code that you will send to the EVM. Unfortunately the .S19 format

202 Practical Embedded Controllers

is not compatible with Hyper-terminal. While still in DOS change the extension of the
S19fileto .TXT. Thisis done with the following command.
REN SWITCH.S19 SWITCH.TXT

Using the ALT TAB change to the Hyper-terminal program.
Press the RESET button on the EVM and the following line should be displayed in
hyper-terminal.

;’ HC11 - HyperTerminal
File Edit “iew Call Transfer Help

=] E3
BUFFALO 3.2 <int?» — Bit User Fast Friendly Aid to Logical Operation_
|Connected 0:03:38 [Auto detect [3600 8-4-1 [SCROLL [cAPS [MUM [Capture [Frint echa y
Figure C7
Hyper-terminal front screen

Type LOAD T and then press ENTER.
Click on the Transfer menu and then choose Send Text File.

The screen should change to

Practical 3: Reading switches on the EVM 203
.¢" HC11 - HyperT erminal
File Edit Miew Call Transfer Help

Send Text File =
Ltk [Q x| = @&k E Al
= LD
Higtory
File name: I j Open |
| Bl tpes ITth filer [TT) j Caricel | $
|Connected 0:0:32 |Aut0 detect |SBDD B-M-1 |5CHULL |CAPS |NUM |Eapture |F'rint echo —A
Figure C8
SWITCH.TXT

Once the program is loaded, run the program by typing the following.
G C000

PRACTICAL 4

Sending characters to an LCD
display

Objective

This practical will introduce you to programming the 68HC11 microcontroller by sending
information to the LCD display on the EVM. This practical is done in three steps. First
you will enter the code, as written below, into the assembler program. Next or at the same
time the comments will be added to the program. Finally you will load and run the
program using the EVM board.

Writing the program

Click on the assembler program icon. Create a new file by clicking on the new file icon
on the top menu. Type in the program exactly as written below. Add the appropriate
comments to the right of each line. Comments can be added as it is being written or after
it is complete. The comments should be short but include the information on what that
line is trying to accomplish. Do not just repeat the instruction in the comments. Two
examples of comments of an instruction could be...

LDAA #$39 Load A with $39

Thisisnot avery good comment. It just repeats the instruction. A better one would be.

LDAA #$39 Load the ASCII character 9
Or
LDAA #%$39 Load 9 ASCII in Accumulator A

Remember that the comments are there so that anyone can understand what the
instruction istrying to accomplish.

Practical 4: Sending characters to a LCD display 205

Capitalization does not matter, but the spacing of instructions is very important. The
names for lines, such as START below, should aways be placed on the far left-hand side
of the page. Place one tab space (at least 8 spaces) between the line name and the
instruction. If there is no line name then put 2 tab spaces. There should be at least 1 tab
space between the instruction and the operand of the instruction if any. There should be at
least 2 tab spaces between the operand and the comment. Stars (shift 8) are used to
indicate acomment line and to separate different parts of the program. The comment lines
are not loaded into the microcontroller.

hhkkkkkhhhkhkkhkhhhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhhhdhdhhdhdhdhhdhdhdrrrddrrxsx

* WRITTEN BY - JOHN M. PARK
*
* DESCRIPTION - IDC DISPLAY TEST
*
* DATE - 6/01
LR R R R R R R R R R R R b R R R R R R R o e R R R R R R R e
ORG $C000
LDS #50
khkkhkkhkkhkkhkhkhkhhhkhhkhhhhdhhhhhdhhhhhdhhhhdhdhhhhhhhhdhdhhhhdhhdhddhhdhddhhdkddhxxsx
* PROGRAM

khkkhkkhkkhkkkhkkhkkhkhkkhkkhkkhhkkhkhkhhkhhhhkhhkhhhkhhkhhhhhkhhkhhkhhhkhhkhhkhkhkhhkxhkhkhrkxkkkhrxx*x

JSR COMSET
RESTART JSR MENU
JSR RESTART

LR R R R R R R R R R R R e S R R R

* SET UP THE LCD AND CLEAR SCREEN
* $8000 = LCD CONTROL REGISTER
hAhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkhhkhkhkhhkhhhhhkhhkhhhkhhkhhhhhkhhkhhkhhhkhhkhhkhhkhhhxhkhkhrxkkhkhrxx*x
COMSET JSR DELAY DELAY FORLCD

LDB #$38 LOAD FIRST CONTROL BYTE

STB $8000 CONTROL REG

JSR DELAY DELAY FORLCD

LDB #3$0C LOAD SECOND CONTROL BYTE

STB $8000 STORE IN LCD CONTROL REG

JSR DELAY DELAY FORLCD

LDB #3$02 RESET SCREEN

STB $8000 DOIT

RTS
LR R R R R R R R R R R R R e R R R S R
* START OF MENU SYSTEM - PRINT START MESSAGE
khkkhkkhkkhkkkhkkhkkhkhkhkkhkkhhkkhhkhhkhhkhhhkhhkhhkhhhhhhhkhhkhhhhhkhhkhhkhhkhhkxhkhkhrxkkhkhrxx*x
MENU LDX #MESSAGE1 ‘IDC TEST PROGRAM’

JSR DISPLAY
LDX #MESSAGE2
JSR DISPLAY
LDX #MESSAGE1L
JSR DISPLAY
LDX #MESSAGE3
JSR DISPLAY
LDX #MESSAGE1L
JSR DISPLAY

206 Practical Embedded Controllers

LDX #MESSAGE4

JSR DISPLAY

LDX #MESSAGElL

JSR DISPLAY

LDX #MESSAGES

JSR DISPLAY

LDX #MESSAGEl

JSR DISPLAY

LDX #MESSAGEG6

JSR DISPLAY

LDX #MESSAGE7

JSR DISPLAY

LDX #MESSAGE7

JSR DISPLAY

RTS
khkkkhkhkhkkhhkhkhhhhkhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhkhhkhddkhkhkhxkdx%x
* DISPLAY ONE LINE OF MESSAGE DEFINED BY THE X INDEX REGISTER
* ROW ISDEFINED AS 40 (28 HEX) CHARACTERS
* $8001 = LCD SCREEN RAM

khkkkhkkhkkkhkkhkkhkhkkhkkhkhkhkkhkkhhkhkhkhkhkhkhhhkhhkhhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkkkhkhkhkkkhkhkhkkkkkhkkk*x*%

DISPLAY LDB #$28
DISLOOP JSR LCDBUSY

JSR DELAY

LDA $00,X

CMPA #$23

BEQ ENDD

STA $8001

INX

DECB

BNE DISLOOP
ENDD RTS
khkkkkhkhhhkhkkkhkkhkhhhkhkhkkhkhkhhhhkhkhkhkhhhkhkhkhkhhhhhkhkhkhdhhhkhkhkkhkhdhhhkhkhkk k dhhhkhkkk k,khkkkkk,k,*%x%
* DELAY FOR LCD

khkkkhkkhkkkhkkhkhkhkkhkhkhkhkhkhkhkhkhhkhhkhkhhkhhkhkhhkhhkhkhhhhkhkhhkhhkhkhhkhhkhkhhkhkhkhkhkhkkhkhkhkkkk,kkxk%x%

DELAY LDY #$1000

LOOP DEY
BNE LOOP
RTS

hkkkhkhkhkkhhkhkhhhhkhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhhhhkhhkhhkhhkkhkhkhxkdx%x

*CHECK BIT 7TO SEE IF THE LCD ISBUSY
khkkkhkkhkkhkkhkkhkhkhkkhkkhkhkhkhkhkhkhkhhkhhkhkhhkhhkhkhhkhhkhkhhkhhkhkhhkhhhkhhkhhkhkhhkhhkhkhkhkkhkhkhkkkkhkhkkxk%x%
LCDBUSY LDAA $8000

ANDA #$80

CMPA #$80

BEQ LCDBUSY

RTS

khkkkhkkhkkkhkkhkhkhkkhkkhkhkhkkhkkhkhkhkkhhkhkhkkhkkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkkhkkk*x*%

* MESSAGES MUST BE 16 CHARACTERS LONG

khkkkhkhkhkkhkhkhhkkhhkhkhhhhkhhhhhkhkhhhhhhhhhhkhhhhhkhhhhhkhhhhhkhhhhkhkhhhdhkhkhkkkhkdkkkxx%

MESSAGE1 FCC ‘IDCTEST PROGRAM’

Practical 4: Sending characters to a LCD display 207

MESSAGE2 FCC ‘Il GOOD WORK !! ‘
MESSAGE3 FCC 000000001 <-S/N ‘
MESSAGE4 FCC ‘IDC-0001<-MODEL *

MESSAGES FCC ‘1.0<VERSION ‘
MESSAGEG6 FCC ‘$$$1T WORKS $$$ ‘
MESSAGE7 FCC

Loading the software

NOTE: If you have setup hyper-terminal in the previous practicals, then skip down to
SENDING A PROGRAM TO THE EVM.

Start the computer and after it has booted up into Windows and run the program called
Hyper-terminal from the icon on the screen or under accessories if there is no icon. When
Hyper-terminal is booted up the screen should look like...

Connection Description H |

FigureD1
Hyper-terminal setup screen

Add the HC11 and choose an icon and then click OK. Follow the setup screens as
shown below as set up as shown.

208 Practical Embedded Controllers

Connect To EE |
Q‘? HC11

Enter detailz far the phone number that yow want ta dial;

Country/region; I-‘-“-'-JSU-EIIiEI [B1] j

Arga code; IEIE

Phone number; I

Connect using:

Figure D2
Set communication port to comm 1

COM1 Properties E |

Fort Settings |

Bitz per second:

Drata hitg: IB j
Parity: IN.:.ne j
Stop bits: |1 j

Le

Flawy contral: INDne

Advanced... | Bestore Defaulk: |

| k. I Cancel | Spply |

Figure D3
Comm port setup

Practical 4: Sending characters to a LCD display 209

HC11 Properties |

Cormect To Settings |

— Function, arow, and chl keys act az

i Temninal keys i~ windows keys

— Backzpace key zends
& CulsH Del & Chl+H, Space, Ciil+H

E mulation:

I,.-_\.,ut.;. detect vI Teminal Setup... | Colors. .. |

T elnet terminal |D; NE

Backzcroll buffer lines: IEEIEI ::I

¥ | Flay zound when connecting or disconnecting
[Exit program upon disconmecting

ASCIl Setup... |

] I Cancel |

Figure D4
Terminal setup

ASCII Setup HE|

— A5SCI Sending
[T Send line ends with line feeds

[~ Echo typed characters locally

Line delay: IEI millizecondz.
Character delay: IEI millizeconds.

— A5SC| Receiving

[T &ppend line feeds to incoming line ends
[T Force incoming data to 7-hit ASCI
¥ ‘wiap lines that exceed terminal width

Cancel |

Figure D5
ASCII transfer setup

210 Practical Embedded Controllers

Sending a program to the EVM

The first step in sending a program that you have written to the EVM is to save the
program by going to ‘save as' under the file menu in the PF32 program. Save the program
asLCD.ASM. If thereis afile by that name aready in the directory, write over it.

B# Programmer's File E ditor [_ =]
File Edit Optionz Template Execute Macro *indow Help

=Y 2 [=T1EN B R RN Y e E
LED_asm = [_TO[=]

X -
WRITTEH BY - JOHH M. PARK j

DESCRIPTION - IDC LED TEST

* % % ¥ %

DATE - 6/81
* PROGRAHM TO TURH OH SOME LEDS
* $1809 PORT D DATA DIRECTION REGISTER
* $1808 PORT D = LEDS
ORG $BBBB
LDS #a7
LDA #i3n
5Tha $1089
START LDA #io00
£TA $1008
JSR SFFBS
JSR DELAY
LDA #3334 =
[T H

[Cnicalz[3 [FWR[[RecOif [Nowrap [DOS NS NOM [

Figure D6
PF32 screen

After the file has been saved click on the DOS button and type ASM11 LCD.ASM.
This will compile the program into different formats. One of the formats will be a .S19
file. Thisfile has the code that you will send to the EVM. Unfortunately the S19 format is
not compatible with Hyper-terminal. While still in DOS change the extension of the .S19
fileto .TXT. Thisis done with the following command.

REN LCD.S19 LCD.TXT

Using the ALT TAB change to the Hyper-terminal program.

Press the RESET button on the EVM and the following line should be displayed in
hyper-terminal.

.v" HC11 - HyperT erminal
File Edit “iew Call Transfer Help

Practical 4: Sending characters to a LCD display 211

BUFFALO 3.2 {int> - Bit User Fast Friendly Aid to Logical Operation_

Connected 0:03:38 |Auto detect 9600 8-M-1 SCROLL [Caps [HUM [Capture [Print echa p
Figure D7
Hyper-terminal front screen

Type LOAD T and then press ENTER.

Click on the Transfer menu and then choose Send Text File.
The screen should change to

.v" HC11 - HyperT erminal
File Edit “iew Call Transfer Help

Send Text File

Look in:

|a LCD
LCD

7| %]
x| e ® ek E-

File: name; I j Open |
Files of wpe: IText file [*. TXT] j Cancel | -
A [hd
|E0nnected 0:01:32 Auto detect |SEDD 8-M-1 |5CHDLL |C.f3.F'S |NUM |Capture |F'rint echo v
Figure D8
LCD.TXT

Once the program is loaded, run the program by typing the following.
G C000

The LEDs

PRACTICAL 5

Reading keypad input

Objective

This practical will introduce you to programming the 68HC11 microcontroller by reading
information from the keypad on the EVM. The practical is done in three steps. First you
will enter the code, as written below, into the assembler program. Next or at the same
time the comments will be added to the program. Finally you will load and run the
program using the EVM board provided.

Writing the program

Click on the assembler program icon. Create a new file by clicking on the new file icon
on the top menu. Type in the program exactly as written below. Add the appropriate
comments to the right of each line. Comments can be added as it is being written or after
it is complete. The comments should be short but include the information on what that
line is trying to accomplish. Do not just repeat the instruction in the comments. Two
examples of comments of an instruction could be...

LDAA #$39 Load A with $39

Thisis not avery good comment. It just repeats the instruction. A better one would be.

LDAA #$39 Load the ASCII character 9
Or
LDAA #$39 Load 9 ASCII in Accumulator A

Remember that the comments are there so that anyone can understand what the
instruction is trying to accomplish.

Capitalization does not matter, but the spacing of instructions is very important. The
names for lines, such as START below, should always be placed on the far left-hand side
of the page. Place one tab space (at least 8 spaces) between the line name and the

Practical 5: Reading keypad input 213

instruction. If there is no line name then put 2 tab spaces. There should be at least 1 tab
space between the instruction and the operand of the instruction if any. There should be at
least 2 tab spaces between the operand and the comment. Stars (shift 8) are used to
indicate a comment line and to separate different parts of the program. Comment lines are
not loaded into the microcontroller.

kkhkkkkkkkkhkkhkkhkkhkkkkhkhkkhkhkhkhkkhkkkhkhkhkhkhkhkhkkkhkhkhkhkhkhkhkkhkkkhkhkhkhkhkhkhkkkkhkkkkhkhkhkkkkkkkk**x*x

* WRITTEN BY - JOHN M. PARK
*
* DESCRIPTION - KEYPAD TEST
*
* DATE - 6/01
kkhkkkkkkkkhkhkhkhkkkkhhkhkhkhkhkhkkhhhkhkhkhkhkhkkhhkhkhkhkhkhkkkkhhkhkhkhkhkkkhhkkhkhkhkkkkkkkk,k*x*x
ORG $C000
LDS #47
kkhkkkkkkkkhkhkhkhkhkkkhhkhkhkhkhkhkkkhhhkhkhkhkhkhkkhhkhkhkhkhkkkkhhkhkhkhkhkkkhhkhkhkhkhkkkkkkkk,k*x*x
KEY_B EQU $1000 KEY PRESS (PORT A)
TCTL1 EQU $20 TIMER CONTROL REGISTER
PACTL EQU $26 PORT A REGISTER
kkhkkkkkhkkhkkhkkhkkhkkhkkkkkhkhkhkhkhkkhkkkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkkhkkkhkhkkhkhkhkhkhkkkkhkhkkkhkhkhkkkkkkkk***
* PROGRAM

hkhkkkkkhkhkhkhkhkhkhkhhhhkhkhkhkhkhhhhhkhkhkhkhkhhhhhhkhkhkhkhkhkhhhkhkhkhkhkhkkhhkhkhkhkhkhkkkkkkk k k%

JSR COMSET
RESTART JSR KEYP
JSR RESTART

kkhkkkkkkkkhkhkhkhkkkkhhkhkhkhkhkhkkkhhkhkhkhkhkhkkhkhhkhkhkhkhkhkkkkhhkhkhkhkhkhkkkkhkhkhkhkhkkkkkkkk k%

* SET UP THE LCD AND CLEAR SCREEN
* $8000 = LCD CONTROL REGISTER
khkkkkhkkkhkkhkkkhkkhkkhkhhkkhkkhkkhkhhkkhkkhkhkhhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkkkkhkxkkx*%
COMSET JSR DELAY DELAY FORLCD
LDAB #$38 LOAD FIRST CONTROL BYTE
STAB $8000 CONTROL REG
JSR DELAY DELAY FORLCD
LDAB #3$0C LOAD SECOND CONTROL BYTE
STAB $8000 STORE IN LCD CONTROL REG
JSR DELAY DELAY FOR LCD
LDAB #$02 RESET SCREEN
STAB $8000 DOIT

kkhkkkkkkkkhkhkhkhkkkkhhkhkhkhkhkkhkkhkhhkhkhkhkhkhkkhhkhkhkhkhkhkkkkhkhkhkhkhkhkkkhhkkhkhkkkkkkkkk k,*x*x

* KEYPAD SETUP
* ADJUST DIRECTION BITSIN DDRA3 IN 'PACTL' $1026
khkkhkkkhkkkhkkhkkkhkkkhkkhkhkkhkkhkkhkhhkkhkkhkhkhhkhkkhkkhkhhkkhkkhkkhkhhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkkhkk,kxkkx*%

LDX #KEY_B

LDAA #3$00

STAA TCTL1X

BSET PACTL,X,$08 ADJUST PA3 TOBE OUTPUT

RTS
khkkhkkkhkkkhkkhkkhkkhkhhkkhhhkhkhhkhhkhkhkhhkhhkhkhkhkhhkhhkkhkhkhkhhkhkkhkhkhhkhkkhkkhkhkkhkkhkkkhkk,kk,*x%
* DISPLAY ONE key pressto the screen
* $8001 = LCD SCREEN RAM
khkkhkkkhkkkhhkkhkkhkkhkhhkhkhkkhkhhkhhkkhkhkhhkhhkhkhkhkhhkhkkhkhkhkhhkhkkhkhkhhkhkkhkkhkhkkhkkhkkkhkk,k*,*x%
DISPLAY PSHA
DISLOOP JSR LCDBUSY

214 Practical Embedded Controllers

PULA

JSR DELAY

STA $8001

RTS
RR Rk R R kR R R R R R R R R R R R R R Rk kR e R R R R R R R R R R R Rk R R R kR R
* DELAY FORLCD
hhkhkhkhhhhhhddhhhddhdhhhdhhdhdhddhhddhhdhdhdddhhddhhdhddhddhdddhdrdrdhdhdhhdddrdddddrrxx
DELAY LDY #$100
LOOP DEY

CMPY #$0000

BNE LOOP

RTS

kkkkhkkhkkhkkhkkhkkhkkkhkhkhhkhkhkhkhkhhkhkhhkhkhkhkhhkhkhkhhhhkhkhkhhkhkhhhhkhkhkhkkhkhkhhkhkdkhkkkkkkk,k,*kx*x%x

* CHECK BIT 7 TO SEE IF THE LCD ISBUSY
RS EE S S E LSS S S LTS EE LTSS LSS S EE TS EE LTS EE LTSS EEEEEEEEEEEEEEEE R R EE R R R R R R R
LCDBUSY LDAA $8000

ANDA #3$80

CMPA #$80

BEQ LCDBUSY

RTS
khkkkhhkkkkhhhkhkkhkhhhkkhkhdhhhkhdhhhkhkhdhhhkhdhhhkhkhdhhhkhdhdhhkhkhdhhhkhdhdhhkhkhdhhkkhddhhkkk,d,kkk*k,*,*%x%
* KPSCAN - SCAN KEYPAD ONCE - MAIN SCAN SUBROUTINE
* RETURN: RAW DATA IN ACCA DATA FORM XRRRRCCC
* R=ROW C = COL ($07 = NO KEY PRESSED)
* NOTE NEED TO INITIALIZE PORT A BEFORE USING THIS ROUTINE

hhkhkkkkhkhhkkhkkhhhhkhhhhhhhhhhdhdhhdhdhhdhdhhdhdhhdhdhhdhdhhdhdhrdhddrxhdhxx

KEYP LDX #KEY B POINT TO PORT A
LDAA #$07 LOAD A WITH %00000111
KPSC2 STAA $00,X STORE IN PORT A
JSR DELAY DELAY
LDAA $00,X LOAD A WITH WHAT ISIN PORT A
SUBA #$80
CMPA #$07 CHECK TO SEE IF ANY KEY PRESS
BEQ KEYP
PR E SRS L S LET ST EEETETETEL LS EETETELLELELETEETELTEEEEEELEEEEELEEE R L L LR R R R L LR R R RS TR
* CHECK KEYPRESS AND ROTATE ROW CHECK
PSS S L ST ST E LTSS LS LS ETEEEEEEEEEEEEE L EEEE RS LR R R L LR R R R SRR R R RS R e
CHECK1 LDAA #$F7 LOAD 11110111
LDAB #$04 SET THE COUNT FOR 4
GETCHR PSHA PUSH THE 0 POSITION ON THE STACK
PSHB PUSH THE COUNT ON THE STACK
STAA $00,X STORE ZERO CHARACTER BYTE IN PORT A
JR DELAY DELAY
LDAA $00,X READ KEYPAD
PSHA PUSH POSSIBLE GOOD CHARACTER ON THE
STACK
ANDA #$07 DELETE FIRST FIVE BITS/ISIT CORRECT ROW?
CMPA #$07
BNE CHECK2 IF CORRECT ROW THEN EXIT TO CHECK
CHARACTER
PULA PULL BAD CHARACTER FROM STACK
PULB PULL B COUNT FROM THE STACK

Practical 5: Reading keypad input 215

DECB DECREMENT THE COUNT

CMPB #$00 CHECK THE COUNT

BEQ END2 IF DONE RESET

PULA PULL O POSITION FROM STACK

ROLA IF NOT CORRECT ROW OR DONE THEN
ROTATEOLEFT

BRA GETCHR TRY NEXT ROW

END2 JSR KEYP

kkhkkkkkkkkhkhkhkhkkkkkhhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhhhkhkhkhkhkhkkhhkhkhkhkhkhkhkkkhkhkhkhkkkkkkkkkk*x*

hhkhkkhhhkhkhkhkhkhkhhhhhhhhkhkhhhhhhhhhkhhhhhhhhhhkhhhhhhhdhhkhhhhdhhhdhdhhhhhddhddxkririxx

*0=$BB, 1=$EB, 2=$EB, 3=$EE, 4=$F5, 5=$F3, 6=%F6, 7=$DD, 8=$DB, 9=$DE

* = $BD, # = $BE, NOKEY = $7F
Ihkkkkkkhkhhkkkhkkhkkkkkkhhkkkkkhhkkkkkkhhkkkkkhhkkkkkhhhkkkkkkhkkkkkkk*
* KPGETC - SCAN KEYPAD WAIT FOR KEY TO BE PRESSED

* RETURN : ASCII DATA IN ACCA

kkhkkkkkhkkhkhkhkkhkkhkkkhkhkhkkhkhkhkhkkhkkkhkhhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkkkhkhkhkhkhkhkhkkkkhkhkkkhkhkhkkkkkkkk**x*

CHECK?2 PULA GET THE CHARACTER
PULB RESET THE STACK
PULB RESET THE STACK
LDY #LOOK1 POINT TO LOOK UP
LDX #LOOK2 POINT TO SECOND TABLE
KPGC2
* SUBA #$80
CMPA $00,Y SCAN VALUE SAME ASLOOK UP VALUE?
BEQ KPGC1
LDAB $00,Y IF VALUE POINTED$7F TOO FAR
CMPB #$7F VALUE SCANNED ISNOT IN THE TABLE1
BEQ KEYP GET VALUE FROM KEYBOARD AGAIN
INX
INY ADJUST BOTH POINTERS
BRA KPGC2
KPGC1 LDAA $00,X FIND EQUIVALENT
JSR $FFBS
JSR DISPLAY
RTS

hhkhkkhhhhhkhkhkhhhhhhhhhkhhhhhhhhhkhkhhhhhhhhhkhhhhhhhhhhkhhhhhhdhdhhhhhddhdhdxkvihixx

* LOOK UP TABLE FOR RAW DATA

* 0=$BB,1=$EB,2=$EB,3=$EE,4=$F5,5=$F3,6=$F6,7=$DD,8=$DB,9=$DE

**=$BD #=$BE,NO KEY=$7F

R R R R T
LOOK1 DB $BD,$EB,$ED,$EE,$F3,$F5,$F6,$DB,$DD,$DE,$BB,$BE,$7F
LOOK2 DB $30,$31,$32,$33,$34,$35,$36,$37,$38,$39,$2A ,$23

hkhkkhhhhkhkhkhkhhhhhhhhhkhkhhhhhhhhkhkhhhhhhhhhkhkhhhhhhhhhkhhhhhhhhhhhhhdhdhdxdrihixx

Loading the software

NOTE: If you have setup Hyper-terminal in the previous practicals, then skip down to
SENDING A PROGRAM TO THE EVM.

Start the computer and after it has booted up into Windows and run the program called
Hyper-terminal from the icon on the screen or under accessories if there is no icon. When
Hyper-terminal is booted up the screen should look like...

216 Practical Embedded Controllers

Connection Description E |

Enter a name and chooze an icon for the connection:

Harne:
HC11

lcon:

Cancel |

FigureE1
Hyper-terminal setup screen

Add the HC11 and choose an icon and then click OK. Follow the setup screens as
shown below as set up as shown.

Connect To EE |

HC11

Enter detailz far the phone number that yow want ta dial;

Country/region; I-‘-“-'-JSU-EIIiEI [B1] j

Arga code; IEIE

Phone number; I

Connect using:

k. I Cancel

FigureE2
Set communication port to comm 1

Practical 5: Reading keypad input 217

COM1 Properties EH |

Port Settings I

Bitz per zecond:

9500

Drata bitz: IB j
Parity: IN.:.ne j
Stop bits: |1 j

Flows contral: INDne

Kl

Advanced. . |

Bestare Defaults |

o]

Cancel |

Apply |

Figure E3
Comm port setup

HC11 Properties EHE3 I

Connect To Settings |

i Teminal keys

— Function, arrow, and ctrl keys act as
 windows keys

— Backspace key sends

@ Chl+H Del ¢ Cul+H, Space, Chi+H
E mulation:
I,.-:'.,ut.;. detect vI Termital Setup,.. | Colors... |
Telnet terminal ID: |AMS]

B ackzcroll buffer lines: |5EIIJ

v Play sound when connecting or disconneching

[T Exit program upon dizconnecting

AET Sk |

=

Terminal setup

218 Practical Embedded Controllers

ASCIl Setup HE|

— ASCH Sending

[T Send line ends with line feads

[~ Echotyped characters locally

Line delay: IEI millizeconds.
Character delay: IEI milizeconds.

— A5C Receiving

[T Append line feeds to incoming line ends
[~ Force incoming data to 7-bit ASC
¥ ‘wiap lines that exceed terminal width

; Cancel |

Figure E5
ASCII transfer setup

Sending a program to the EVM

The first step in sending a program that you have written to the EVM is to save the
program by going to ‘save as' under the file menu in the PF32 program. Save the program
as KEYPAD.ASM. If thereisafile by that name already in the directory, write over it.

B4 Programmer’s File Editor [_ [O] x|
Fil= Edit Options Template Egecute Macro Window Help
= v =
N REEEEREE
E:A\Embedded Control\S oftwarexKEYPADAEEYFPAD =l E3
]]
¥
* WRITTEHN BY - JOHH M. PARK
3*
* DESCRIPTIOH - KEYPAD TEST
3*
F DATE - &/581
0ORG scoee
LDS #s8
KEY_B EQU $1000 KEY PRES!
TCTL1 EQU %20 TIHER cOI
PACTL EQU 526 PORT A RI
* PROGRAH
JSR COMSET
RESTART JSR HEMU
JSR RESTART
<| | »
||Ln‘| Col1 [210 |— Wh | |Fec O [Mo'wrap [DOS [INS CAP i
Figure E6

PF32 screen

Practical 5: Reading keypad input 219

After the file has been saved click on the DOS button and type ASM11
KEYPAD.ASM. Thiswill compile the program into different formats. One of the formats
will be a.S19file. Thisfile has the code that you will send to the EVM. Unfortunately the
S19 format is not compatible with Hyper-terminal. While still in DOS change the
extension of the .S19 fileto .TXT. Thisis done with the following command.

REN KEYPAD.S19 KEYPAD.TXT

Using the ALT TAB change to the Hyper-terminal program.

Press the RESET button on the EVM and the following line should be displayed in
Hyper-terminal.

HC11 - HyperTerminal
Eile Edit Miew Call Transfer Help
=
BUFFALO 3.2 (int> — Bit User Fast Friendly Aid to Logical Operation_
-
Connected 0:03:38 [Aute detect 9600 8-M-1 SCROLL [caPs [HMUM [Captue [Frint echo .
FigureE7

Hyper-terminal front screen

Type LOAD T and then press ENTER.

Click on the Transfer menu and then choose Send Text File.
The screen should change to

220 Practical Embedded Controllers

Send Text File 2 x|

Lok jr: | 3 KEvPED x|« ® ek E-

H
]

p

by Documents

File narme: I j Open
Files of type: ITEHt file [*. TeT] j Cancel |
p

Figure E8
LED.TXT

Once the program is loaded, run the program by typing the following.
G C000

PRACTICAL 6

Using the PAT software

Objective

The objective of this practical is to give you a basic understanding of the PAT software.
The complete PAT manual can be acquired from IDC Technologies.

Overview

Y ou will learn how the PAT software can be utilized to monitor a data transmission. This
will be accomplished by building a working simulation of a computer-to-equipment
communication system. Two computers will be connected together to simulate the
computer-to-equipment system. You will walk through the different sections of the PAT
software including, port settings, communication port testing and protocol transfer. Then
you will change the baud rate to 2 and view the bits on a breakout box.

Installation

L ocate the following equipment:

e Two computers

e Pat software

¢ Onelaplink cable

e Two 25-pin femaleto 9-pin male cables
e Two breakout boxes

Hardware set up

¢ Connect the 9 to 25 cable cablesto the 9-pin Com 1 port of the two computers
¢ Connect each end of the laplink cable to the 9 to 25 cable cables

222 Practical embedded controllers

Software setup

Run the PAT software by clicking the PAT icon on the desktop. If there is no PAT icon
on the screen then run DOS from Programs in Windows. Once the PAT software has
booted up and the two computers are on the screen, then press the space bar. The screen
should changeto...

[=] E3

BN = =N

FiTe Config 392288

~erial Port Setup.

Com 1
Com 2

bled
Chunk Length -
i Open Mode -»

Figure F1
PAT front screen

Communication port setup

Using the right arrow, move the cursor to the Config menu as seen in Figure F2

=] B3

392288

Logging
Code

Code Table
Other

E%?
Table, ASCIT.

rapping.
Port. FPattern.
1

Chunk Length -
File Open Mode -»

ntiguration File :
ing File
To Data Files
Transmit File

F1 Help. Alt-x Exit.

Figure F2
Config menu

Practical 6: Using the PAT software 223

TAB over the PORT menu. Pressing the ENTER key on the keyboard, and open the
PORT menu.

=1 B3

I At 'I E @l E il

Display File Config 302288

Port -> S=[HEE
Baud 2 RT=

DTE
Base Address

Jut 1
IRG

Jut 2
Parity

Line Brk
Data Bits

Stop Bits

DOC

Figure F3
PAT port menu

Change the Baud rate on the top line to 2. First delete the default Baud rate using the
back space and arrow keys on the keyboard. Then type in the number 2.

When done press Enter.

Move back to the Interactive screen. Disconnect the cable that connects the computers.

Use the down arrow to move down the Display menu to Interactive.

e = 5@ B #E Al

File Config I02ZE8

Monitor
Dual Monitor

Log Data
Wiew Log File
Test Ports

Chunk Length -
File Open Mode

Tiguration File :

F1 Help.

FigureF4
I nteractive menu

224 Practical embedded controllers

Press Enter on Interactive and the screen should change to

S PAT

I Auto 'I

[=] k3

B B &5 A

Display File Config 3092288

~ertal Port Setup.
Format
C 0 Nohe

rapping.
Fort. Fattern. Part -
m 1 Pattern.

Path To Data Files
Transmit File

Figure F5
Setup for interactive on com 1

Press the Enter key and the screen should change to...

[o] ClE|m| B @& Al

Display File Config 38ellz
Interactiwe On Com 1 =E&s EI D L RTS DTE

Press END fo Exit.

Figure F6
Interactive screen

Practical 6: Using the PAT software 225

ASCII character test

Choose three characters at random and using the ASCII Table F1 write the binary
equivaent for each character.

Character Binary
Character Binary
Character Binary

Draw the wave form for one of the characters that has been chosen.

Character Waveform
HEX 0 i 2 3 4 5 B 7
HEX BIN | 000 001 010 o 100 101 10 111
0 0000 |(NUL) | (DLE) Space 0 @ P ‘ P
1 0001 |(SOH) | (DC) ! 1 A Q 2 q
2 0010 |(3TX) | (DC2) ‘ 2 B R b [
3 0011 |(ETX) | (DC3) # 3 C S ¢ §
4 0100 |(EQT) | (DC4) $ 4) T d t
5 | 0101 (BN [NAK | % 5 E U ¢ U
6 0110 [(ACK) | (SYN) & B F y f V
7 0111 |(BEL) | (ETB) ‘ 7 G Q g W
8 1000 |(BS) | (CAN) (8 H X h X
g 1001 |HT) | (EM)) 9 I Y i y
A 1010 |(LF |{SUB) ' ; J Z i 2
B 1011 |(VT) | {ESC) + ; K [K {
C 100 |FF) (F9) , < L \ I |
D 101 |(CRY (G5 = M] m }
E 1110 [(80) (RS) > N A n ~
F 1111 | () {US) / ? 0 0 DEL
TableF1
ASCI| table

Press the corresponding key on the computer and watch the breakout box. Natice that
one of the LED flashes a red light as the positive or zero bits are being sent. Does the
LED flashing match the waveform?

PRACTICAL 7

Viewing character data transmission

Objective

The objective of this practical isto give you an understanding how to transfer a character
between two devices using RS-232 on the PAT software.

Overview

You will learn how to monitor a character utilizing the PAT software. This will be
accomplished by building a working simulation of a computer to equipment
communication system. Two computers will be connected together to simulate the
computer to equipment system. You will change the baud rate, test the communication
port and then send characters from one computer to another.

Installation
L ocate the following equipment:

e Two computers

o Pat software

e Onelaplink cable

e Two 25-pin female to 9-pin male cables
o Two breakout boxes

Hardware set up

o Connect the 9 to 25 cable cables to the 9-pin Com 1 port of the two computers
¢ Connect the breakout boxes to the 25-pin connector on the 9 to 25-pin cable
¢ Connect each end of the laplink cable to the breakout boxes

Practical 7: Viewing character data transmission 227

Software setup

Run the PAT software by clicking the PAT icon on the desktop. If there is no PAT icon
on the screen then run DOS from Programs in windows. Once the PAT software has
booted up and the two computers are on the screen, then press the space bar. The screen
should change to...

5 PAT 10

302288

Ser1al Port Setup.

rapping.
=

FPort.

Chunk Lengt
File Gpen Mad

s
tiguration File :
ng File
h To Data Files

Figure G1
PAT front screen

Changing the baud rate
Use the right arrow to move over to the Port menu.

302288

Logging
Com 1 Code

Com 2 Code Table
Other
About

Chunk Lenath
File Open Mod

Conftiguration File
i ile

Pa o Data Files

Transmit File

F1 Help. Alt-X Ex1t.

Figure G2
Port menu

228 Practical Embedded Controllers

Press Enter and the screen should change to

I Auto - I

Display File

el 5 =I5 Al

Contig

392288

Fort -> Sl

Baud -5
DTE
Base Address -»
Out 1 EENlInAsserted
IRG -5
out 2 llintsserted
Parity -»
Line Brk -: BERAAE:
Data Bits =5
Stop Bits -
Contigura
Logging F|
Path To Dat
Transmit File B LDoC
F1 Help
Figure G3
Baud rate

Change the Baud rate to 9600 as shown.

Note that there are two ways to change the Baud rate. The Baud rate on top is
adjustable to any number, while the one on the bottom is changeable only in standard
Baud rates. Use the down arrow to choose the Baud rate. The top Baud rate will change
when you change the bottom one. If the Baud rate is 9600 aready then change it to 2400.
Notice that the PAT software defaults to 8N 1 and can be changed by using the Tab key to

move down to Parity, Data Bits or Stop Bits.

Once the Baud rate has been changed press the Enter key. The screen should change

back to...

I Auto ’I .

Display F1 302288

Lagging
Code

Code Table
Other
About

Chunk Length
File Open Mad

F1 Help. Alt-X Ex1tf.

Figure G4
Port menu screen

Practical 7: Viewing character data transmission 229

Testing the communication port
Using the arrow key on the keyboard move to the Test Ports menu.

392288

Monitor

Cuwal Monitar
Interactive
Log Data
YWiew Log File

Chunk Length
File Open Mod

ntiguratian File :
gging File
; To Data Files
Transmit File

F1 Help. Alt-x Ex1t.

Figure G5
Test ports menu

Auto -

Display File

392288

Contig

Serial Port 1. serial Port 2.

Test Type : [gEE] Test Type :

Internal Chip Check. Internal Chip Check.
Initiate Test. Initiate Test.

Eegisters. [] T/ Rx. Eegisters. [] T=/Fx.
[1 Handshaking Lines. [1 Handshaking Lines.

Check Transmit & Receiwve. Check Transmit & Receijwve.

T= T=
R [1 k= [1]

Check Handshaking Lines. Check Handshaking Lines.

RTS CTS [1] RTS cTs []
DTE Dsk @ oo [DTE DSk @ oo [

Figure G6
Test ports screen

Press the Space key on the keyboard and notice that the PAT software will
automatically test the communication port. The string Automatic Tx/Rx Test should show

up on the screen as shown in the following figure.

230 Practical Embedded Controllers

T B == Al

Display File Config 302288

serial Port 1. serial Part 2.

Test Type : OWEEEl Test Type :

Internal Chip Check. Internal Chip Check.
Initiate Test. Initiate Test.
Registers. [] Tx/Rx. Registers. [] Tx/ Rx.

[] Handshaking Lines. [] Handshaking Lines.

Check Transmt & Receiwve. Check Transmt & Receiwve.

T=
Rx

R utomatic T

L]

Check Handshaking Lines. Check Handshaking Lines.

ETS CTS 4] RTS CTS []
DTR DsE @I oco [] DTR Dsk @ o []

Transmit

Figure G7
Test string

Notice that the RTS and DTR indicators change from green to red as they are toggled.
Sending data from one computer to the other.
Go to the Interactive screen by following the next figures.

'S PAT I E

Ao -

File Config 392288

Serial Port Setup.
Format
} , Mone

Chunk Length
File Open Mad

Figure G8
Display menu

Practical 7: Viewing character data transmission 231

e o] DlE@ B =E Al

FiTe ©Config

ig2288

Manitor
Dual Monitor

Log Data
YWiew Log File
Test Ports

Chunk Length
File Open Mode

ging Fi
h To Data Files
smit File

F1 Help. Alf-X Ex1t.

Figure G9
I nteractive menu

=] E3

I Auto 'I

Display File

|-le) & @/ A

Config

392288

~eri1al Part Setup.
Format
, Mone

rapping.
Port. Fattern. =3

nti1guration File
ging Fi
h To Data Files
Transmit File

F1 Help. Alt-x Ex1t.

Figure G10
Select commone

232 Practical Embedded Controllers

I Auta 'I o

Display File

clg| 7 515 Al

Config

igells

Interactiwe On Com 1 =EEN RI

Press EWD to Exit.

FigureG11
Interactive screen

Type something on each computer and verify that the data is seen correctly on both
computers. It is correct? If not, why? Are the Baud rates the same?
Once the data transmission is verified press the End key on the keyboard.

PRACTICAL 8

Troubleshooting a data
communication system

Objective

The objective of this practica is to show you how to troubleshoot and solve possible
problems with a data communication system. This will be done using two computers, the
breakout boxes and the PAT software.

Overview

You will set up the computers, breakout boxes and the PAT software as described in
Practical 7. The two computers will be connected together to ssimulate the computer to
equipment system. Y ou will troubleshoot problems that are defined by the practical. This
practical is done using two groups, one on each computer. These groups are defined in the
practical as group 1 and group 2.

Installation

L ocate the following equipment:

e Two computers

e Pat software

¢ Onelaplink cable

e Two 25-pin femaleto 9-pin male cables
e Two breakout boxes

Hardware set up

¢ Connect the 9 to 25 cable cablesto the 9-pin Com 1 port of the two computers
¢ Connect the breakout boxes to the 25-pin connector on the 9 to 25-pin cable

234 Practical Embedded Controllers
o Connect each end of the laplink cable to the breakout boxes

Software setup

It is assumed that the delegate knows how to use the PAT software and has transferred
data using the interactive mode in the software.

Run the PAT software by clicking the PAT icon on the desktop. If thereis no PAT icon
on the screen then run DOS from Programs in Windows. Once the PAT software has
booted up and the two computers are on the screen, then press the space bar. The screen
should change to...

S PAT PI= B3

[Ao =] [

File

Sl B 2T Al

Canfig

~erial Port setup.
Format]

Com 1 @ 2400 ,MNone 8,
Com 2 : ,Mone ¢

J92288

Disahled
Disabled

BEuffer Length 192 Chunk Length -»
Time Stamping » Enabhled File Open Mode -»

Contiguration File
Logging File
Path To Data Files
Transmt File

F1 Help. Alt-x Ex1t.

FigureH1
PAT front screen

Wrong baud rate

Group 1 set up their Comm port for 2400 and group 2 set their Comm port in the PAT
software for another baud rate. Group 2 will send a set of 8 characters to group 1. Group
1 will then try to determine what is the baud rate of group 2 using the interactive mode on
the PAT software.

Hint: How many characters are received, compared to the number sent?

Once the baud rate is known the groups will switch and group 2 will set their baud rate
for 2400 baud and group 1 will set their baud rate for an unknown baud rate.

Other group’s baud rate

Wrong number of bits or parity

Group 1 will set up their Comm port for 8N1. Group 2 will set their Comm port
something else. Group 2 will then send characters to group 1 and they will try to
determine what is group 2’ s setup.

Hint: What types of errors are shown on the PAT software. Parity errors?

When the setup is known, the two groups will switch asin previous example.

Other group’s setup

Practical 8:Troubleshooting a data communication system 235

Wrong baud rate and setup

Group 1 will setup their Comm port for 2400 baud and 8N1. Group 2 will set their Comm
port for some other setting. Group 2 will send 8 characters to group 1 as in the last test.
Group 1 will try to determine the baud rate and setup using the PAT software. Once the
baud rate and setup is known, the groups will switch.
Other group’s baud rate and setup

Lights on the breakout box

Disconnect the cable that connects both computers. What is the name, line number, color
and Binary value that relates to the lights that are illuminated on the breakout box?

Name Number Color Binary
Name Number Color Binary
Name Number Color Binary
Name Number Color Binary

Plug in the cable and connect the computers to each other. What has changed?

Name Number Color Binary
Name Number Color Binary
Name Number Color Binary
Name Number Color Binary

What’ s the function of the RTS and CTS lines?

What is the voltage of the TX line?

In the Port setup screen in the PAT software assert the RTS line. Disconnect the
computers from each other and read the voltage of the RTS line. What is the color,
voltage and binary value of the RTS line now?

RTS color Voltage Binary

PRACTICAL 9

Troubleshooting a protocol problem

Objective

The objective of this practical is to show you how to troubleshoot and solve possible
protocol problems that can happen when using a data communication system. Thiswill be
done using two computers, the breakout boxes and the PAT software.

Overview

You will set up the computers, breakout boxes and the PAT software as described in
Practical 7. The two computers will be connected together to simulate the computer to
equipment system. You will troubleshoot problems that are defined by the practical.
Some of the problems are written while others are actual physical problems. Two groups
do this practical, one on each computer. These groups are defined in the practical as
group 1 and group 2.

Installation

L ocate the following equipment:

e Two computers

o Pat software

¢ One laplink cable

e Two 25-pin female to 9-pin male cables
o Two breakout boxes

Hardware set up

o Connect the 9 to 25 cable cables to the 9-pin Com 1 port of the two computers
¢ Connect the breakout boxes to the 25-pin connector on the 9 to 25-pin cable
¢ Connect each end of the laplink cable to the breakout boxes

Practical 9:Troubleshooting a protocol problem 237

Software setup

Initially both groups will boot up and run the PAT software. They will test the hardware
connection. Then one group as defined by the instructor will run the PAT software and
the other group will run the MODBUS software.

Testing the connection

Both groups will boot up the PAT software and get into the Interactive mode. The PAT
software should be setup for a baud rate of 9600 using 8N1. Both groups will attempt to
send some data. If the data is correct, then the connection is correct between the
computers.

5 PAT Pl E3

o = Gile B @lE Al

Display File Config

igallz
e On Com 1 =DCD RI]

Tskhijl=sdjglasdgjasldgjalsajsaldfjlsdaj

Press END to Exit.

Figurell
Sending data

Sending a packet
Group 1 will exit the PAT software and get into the MODBUS software.

238 Practical Embedded Controllers

5 MODBUS

e = 2@ @ @fF Al

Figurel2

Press the F3 key when in the MODBUS software and setup as shown in Figure 1 2.

000A 0002

Press F9 to send the packet to the other group. They should be in the interactive mode
and receiving the packet. What do the characters ook like?

Is there something wrong? Is the PAT software setup correctly?

How many characters are you receiving?
Hint: What language are you using to look at the data?

Logging a packet
Once correct characters are being received, setup the PAT software to log the data. Move
to the Logging screen.

CllEele B @fE Al

I At - I

Practical 9:Troubleshooting a protocol problem 239

File

Monitor
Dual Monitor
Interactive

Wiew Log Fale
Test Ports

rapping.
Pattern.
a

Com 2 P:
! Length -
Time Stamping -»

Contiguration File
Logging File
Path To Data Files
Transmit File

F1 Help. Alt-x Ex1t.

Config

EEEELT
Status.

Figurel3
Log data

PAT

=] E3

I Auto - I

il 5 S15 Al

Display File

Com 1
Com 2

,Mone
,Mone

rapping.
Port. Pattern.
g 1 —om 1 Patt
: m 2 Patt
Length
tamping

Contiguration File
Logging File
Path To Data Files
Transmit File

F1 Help. Alt-X Ex1t.

Config

392288

OCD DTE RI |
|

File Open Mode -»

: Default.cfqg

Figurel4
Snglelog

240 Practical Embedded Controllers

I Auta 'l] e | ! @I IE il

Display File Config EEEELL:

Serial Port Setup.
Format
H o] a

“tatus.

zabled

File

Cantiguration File : Def .cfg
Logging File : i

Path To Data Files

Transmit File

Figurel5
Comport 1

=] E3

I Auto *l e | =] @I IE il

Display File Config IFLETE

Stamping

Buffer Length E Chunk Length -»
Time Stamping = En C File Open Mode -

Contiguration File : Default.cfg

gging File : LogFi To
Path To Data Files) .
Transmit File

Figurel6
Logging data

Once you are in this screen, indicate to the other group to send you a packet.
How many bytes did the other group send?
How many bytes of data do you receive?

Practical 9:Troubleshooting a protocol problem 241

If the number of bytes is correct, then press Alt-X to get out of the logging mode. The
PAT software automatically savesthe data. To view the data go to the View Data screen.
Hint: What language are you using to view the data?

Viewing a logged packet

"5 PAT i [=] E3
[awo =] & | == _|

File Config 392288

Maonitar

Luwal Monitor
Interactive
Log Data

Test Ports

Trnn;m1+ F11H

F1 Help. Alt-x Ex1t.

Figurel7
Log data

=1

[ane o] C|E|@ B s _|
Display F1le Config 392288

EER | OFTILE

Figurel8
Log File

The MODBUS packet should be on the screen. If it is not there or if it is not correct.
Why?

Bibliography

M otor ola r eference manual
M68HC11RM/AD
Revision 3
www.motorola.com/sps

EMC for product designers
Tim Williams
Newnes Publishing
WWW.Newnespress.com

Microcontroller technology: the 68HC11
Peter Spasov
Prentice Hall Publishing

The microcontroller 68HC11:

Applicationsin control, instrumentation and communication
Michael Kheir
Prentice Hall Publishing

Microprocessors and microcomputers. hardwar e and software
Ronald J.Tocci
Prentice Hall Publishing

MC 68HC11: an introduction
Han-Way Huang
West Publishing

Index

68HC11 17, 27, 29-30, 65, 77, 91, 180

AC 87,132, 135, 143
Accumulator 17, 22-6, 41, 54, 56, 58-9, 71,
93
add or subtract bits 24
addressing modes 24
direct 24
indexed 25
inherent 25
relative 25
arithmetic shift 26
bit masking 26
bits see Bits
branch if equal (BEQ) 26
branch if not equal (BNE) 26
branch if higher (BHI) 27
branch if higher or same (BHS) 27
branch if lower (BLO) 27
branch if lower or same (HLS) 27
load accumulator(LDAA) 24-5, 61
logic shift 26
loop see Loop
register see Register
shift 26
most significant bit 26
rotate right 26
shift right 26
shifting of bits 26
store accumulator (STAA) 24
test bits 26
transfer accumulator 25
Address:
16 bit address 52-3
address bus see Bus
data bus see Bus
mode 52
pointer see Pointer
AMD chip 61
Amplifier 88, 1269
Anaog input 4, 6, 18, 29, 45-6, 80-1, 87, 89—
90, 98, 125
amplification 88
analog filters 88
filtering 88
measuring filters 89
Nyquist rate 89
resolution 90, 98

samplerate 89
AND gates 22-3, 26, 41, 56
ANDA 26
inamicrocontroller 22
logical 26
masking 22, 26
physical 26
Antenna 11
Arithmetic operations 51
ASCII 16, 20-1, 25, 27-8, 41, 55, 93, 101,
182
Assembly language 1, 6, 20, 42, 61, 63, 180
BASIC see BASIC
C++ see C++
database management 63
error checking 63
Asynchronous 10, 18, 30-2, 41, 105, 117, 180
asynchronous communication 30,31
interface chips 10
large overheads 10
noise see Noise
slow speeds 10
start and stop bit 31

BASIC 3, 6, 42, 61-2, 180
GW BASIC 61
interpreter 61
to convert 61
Visua BASIC 61
Battery power 18
Baud rate 36-8, 74, 114
in PCB 37
Baudot code 101
Binary 19, 20, 21, 61
binary coded decimal (BCD) 21
binary number 9, 16
AND see AND
gates see Gates
NOT see NOT
OR see OR
sub-set of hex 21
to do arithmetic functions 21
XOR see XOR
converting to hex 21
Bits 1920, 22-9, 31, 56, 60, 76, 90
8-bit 267, 29, 41, 53, 60
16-bit 26-8, 41, 57
shifting and rotating 56

244 Index

in stepper motor or lights 56
sequence 56—7
shift and rotate functions 57
BNE STAR 125
BUFFALO 52-3, 63, 67-9
BUFFALO memory map 68
common utility 67
Bus:
address bus 20, 53
control bus 20
databus 6, 20, 29, 53, 86

C++ 3,6,42,61-2, 180
cross compiler 61
in embedded programming 61
to convert 61
Cables 169-72
cableruns 11, 13, 169, 178
affect noise quality 13
cableties 172
cable trays 169
coaxial cable 162
cooling 173
excess heat 173
horizontal cable run 171
optimal protection 171
ladder cable run 169-70
mounting cables 172
physical damage 173
random pattern 171
types 169
plastic cable runs 169-70
plastic cabletray 185
steel cabletray 169, 175, 185
vertical cableruns 170
wire management 174
common problems 174
Call instructions 60
Capacitance 132-3, 150
Capacitor 87,132, 137, 139, 150
Central processing unit (CPU) 2-3, 6, 52-3,
73,179
databus see Bus
design 179
internal parallel address 6
Clock bytes 31
Code standards 101
ITU universal code 101
voltage standards 101, 111, 114
Commands 25

TAB or TBA 25
Common ground 145
Common mode resistance ratio (CMRR) 82
Condition code register 60
difference between 60
Controller 1, 114
Conduits 13
Counter inputs 4
Crystals 36—7
baud rates see Baud rates
determine the speed 36
faraday shield see Faraday shield
frequency 36-8
to stabilize clocking 36
low frequency crystal 38
resistor see Resistors
to reduce noise 37
see also Noise
CSMA/CD 106, 108-9, 119, 182
low trraffic level 108
collision detection 108
inindustrial controller system 108
node 108
problem 108

Data
data acquisition systems 87, 162
data communication 1, 8, 182
dataloggers 179
program instructions 6
db9 connector 116
DC current measurement 87, 89
DCS 11, 179-80
De-bounce 83, 93
Decibel 122
Decima 19-20
Differential 80, 82, 126—7, 129, 181
common mode rejection ratio 129
differential analog circuits 82
differential nature 82
more resistance to noise 82
differential digital circuits 82
advantage 82
disadvantage 82
opto-isolator 82
to reduce noise 82
test equipment 127
Digital:
digital circuit decoupling 137
capacitor decoupling 137

digital controller 90
analog devices 90
DC stepper motor see Stepper motor
fuzzy logic 91
rotor 90
seria bus system 91
digital input 4, 18, 45-6, 55, 81, 83, 98,
181, 185
bouncing 83
de-bounce see De-bounce
filters 88
NC see Switches
NO see Switches
problems 83
to delay thereading 83
digital output 18, 47, 85, 181
controls 856
Diode 87
Distributed control system (DCS) 2

EEPROM 24, 6, 8, 36, 41, 49, 63, 65-6,
74-8, 179, 181
Electric field 150, 1523
Electro magnetic force (EMF) 86
back EMF 86
bad connections 3
clearing 75
destroy 86
in amicrocontroller system 74
incorrect installation 3
memory location 75
very stable 74
writing 76
Electronic circuits 11
noise reduction see Noise reduction
Electronic equipment 3
cause catastrophic problems 3
Embedded controllers 1-3, 9, 13-5, 185
cause catastrophic problems 3
intelligent electronic devices 2
control and monitor devices 2
EMC 135-6, 138, 140, 146
cable trench grounds 158
in dry sandy areas 159
uninsulated cable 158-9
vertical ground stakes 158
grounding see Grounding
EMI 12, 136, 148
EPROM 34, 6, 8, 41, 52, 63, 65, 68, 179,
181

Index 245

Ethernet 9-10, 3-2, 100-1, 1057, 182
cyclic redundancy 31, 35
Evaluation module (EVM) 51, 67, 91
buffalo program 52
setting up 52
Expanded mode 65
External:
external address bus 3
external control bus 3
external databus 3
external electromagnetic noise 169
external forces 3
external memory chips 6

Faraday shield or box 37, 136-8, 1513, 183
earthground 151, 156
ferrite material 152
floating 151
non-grounded 151
incoming electromagnetic field 151
negatively charged 153
Edisson effect 153
corrosion due to electrolysis 153
to reduce corrosion 153
Fiber optic 100, 117, 120, 172, 182
fiber optic cable 18, 30, 32, 100, 117-8,
172
immune to external noise 30
laser diode 117
light sensitive receiver 117
to melt connectors 117
to connect industrial devices 118
zZip cable 118
Fieldbus 106, 108, 118, 182
Firewire 9, 32, 182
Flow charts 43-5, 47
preparation phase 47
sub-subroutines 47
Full-duplex 106—7
multi-dropped full-duplex 107

Gas discharge tube (GDT) 155
Gates 224
address location 22
Grounded circuits 124
Grounding 12
noise conduits 12
EMC grounding 146
Faraday box see Faraday box
onaPCB 146

246 Index

track placement 150
ground specification 141
cabinet installations 143
common mistakes 141
common presumption 143
grid grounds 143
lightning strike 144
parallel grounds 143
real world example 142
single point 143, 145
grounding solutions 10, 140
types of earth grounds 144
lighting and static voltage protection 12
new EMC requirements 12
PCB see PCB
safety ground 157
earth ground spike 157
lightning rods 159
tower lightning protection 159
solution 140, 184
earth grounding 184
high priority 184
lightning protection 184
lightning rod 184
unshielded cable 184
GW BASIC see BASIC

Half-duplex 106, 119
most common mode 106
Hardware vs software 33
cyclic redundancy check (CRC) 55
hardware reset 33
advantage 34
arithmetic checksum 35
design 34
disadvantage 34
error free 35
resets al the chips 33
self explanatory 34
software resets 34
stops and moves 34
types of resets 33
HC11 17-8, 27, 37, 41, 46, 52, 63, 67
transmit and servicelines 18
two communication modes 18
SCl see SCI
SPl 18
Hex 19-21, 41, 101
conversion to binary 20
hexadecimal 16, 20, 93, 101

/0 2,6,9, 14, 29, 73, 78, 181
Impedance 126, 130-1
Inductance 150
Industrial electronic equipment 1
Inputs 1, 6, 8, 224, 28, 45, 47, 49-50, 73, 79,
181
analog inputs see Analog input
differential see Differential
digital inputs see Digital input
in data acquisition systems 80
planning phase 45
single end see Single end
Installation 11, 48, 1167, 162-3, 167, 169,
172, 174-5, 177
cable see Cable
conduit installation 1756
plastic conduit 176
specia UV resistance 176
connector problems and solutions 167-8
crimp connectors 13, 163, 166, 178
advantage 166
problems 166
failure in working equipment 13
planned maintenance 169
re-install 163
screw connectors 13, 163, 168-9, 178
flap type screw connectors 165
types 165
soldered connectors 163, 167, 178
first and most important 167
very common problems 163
excessive vibrations 168
vibration free location 168
visual and mechanical check 169
Instruction:
BRA 60-1, 69
CMPA 26, 60
IMP 60-1, 69
RTS 60-2
Intelligent electronic devices 2
control and monitor devices 2
Interface manager 45
Interrupt 60, 64, 68—71
hardware interrupts 70
data acquisition module (XIRQ) 70
maskable vs non-maskable 70
SCl interrupts see SCI
maskable interrupts 71, 78
non-maskable interrupts 71-2, 78
software vs hardware 70

software interrupts 70
types 64

IRQ 69

Jumps 60
conditional jJumps 60
unconditional jumps 60

Keypads 2, 29, 456, 914, 98, 182
accumulator see Accumulator
converts the key press 93
de-bounce see De-bounce
reading software 91
subroutine to check 93
to the evaluation modules 91
types 91

LCD 6,41, 51, 64, 79, 94-8, 182
data communication 99-103, 106
Ethernet see Ethernet
fiber optic see Fiber optic
on-board RAM 95
master slave bus 107

alarm situation 108
pooling method 107
round robin method 107
talk directly 107
master/slave 107-9, 182
protocol see Protocol
serial communication 100, 120
simplex 106, 119
speed problem 100
timed setup 95
three basic parts 101
timed system 109
faster data transfer 109
link active scheduler (LAS) 109
problem 109
towriteto 97

LED 57, 90, 117

Lenz'slaw 86

Load, store and transfer 53

Logical operations 55
to check 55

Loop 26, 58
CBA 26
CMPA seeInstructions
CMPB 26
CPD 26

Index 247

Memory 1, 4, 6, 8-9, 24-7, 33-5, 41, 49, 59,
61, 63-9, 71-5, 77, 180-81
BUFFALO see BUFFALO
inamicrocontroller 63
internal and external 63
internal RAM 65
see also RAM
memory-checking 35
memory corrupt 34
memory map 1, 9, 64, 67-8, 78
vectoring 64
interrupt see Interrupt
isaway of 64
vectors see Vector
Metal oxide varistor (MOV) 155
Microcontroller:
converts 21
design 3
displays 2
Ethernet see Ethernet
equipment ground 156
in embedded controllers 16
keypads see Keypads
main components 3
memory see Memory
programming 5
also see Programming
power systems see Power systems
registers see Registers
relays see Relays
safety considerations 177
installation see Installation
to reduce accidents 177
voltage-sensing device 178
samplerate 9
temporary storage locations 17
to control mains/solar 18
troubleshooting techniques 176, 182
common method 176
possible problems 176
Microwave 2, 142
Modbus 101, 106, 108, 182
Morse code 20, 100
Motorola chip 61
Multimeter 141

N type connectors 162
Nanometers 133
Nibble 19,20

248 Index

Noise 3,11, 31, 37, 81-3, 100, 110, 112, 115,

121-3, 126, 129-35, 138-40, 1434, 147—
50, 162, 169-71, 178, 183-5
capacitive coupled noise 132-3
adjacent equipment 132
communication lines 133
problems 132-3
separated by 132
causing phantom characters 31
conductive coupled noise 131
external equipment 131
problems 137
transmission lines 131
electronic noise 121, 132, 139
external noise 130-1
types 130
internal and external 122-3, 139
low impedance 129
magnetically coupled noise 133-5
from adjacent equipment 135
induced noise 134-5
line of force 133
magnetic field 133, 135, 150, 152-3
more susceptible to noise 31
noise problem 128
noise reduction 11, 14, 135-6, 169, 183,
185
batter effect 13
broadcasting wire 11
equipment acts like an antenna 11
exposed conductor 11
four areas of noise reduction 12
in PCB design 135
less susceptible to noise 11, 31
methods 135
noisy circuits, filters 11
preventing noise 11
victimwire 11
noise transmitted 123
on PCB 124
power of noise 122
radio antenna 123
signal to noiseratio 88, 122
source 122
to other chips 37
NOT gates 22, 24, 41
toinverse 24
used in conjunction with 24
used to reverse 24
Number systems 17, 19, 41

binary see Binary
decimal see Decimal
hex see Hex
Ohm'slaw 87
OR gates 22-3, 26, 41
ORA 26
Oscillator 18, 36
OSI model 103, 105-6, 119
application layer 1034, 106
datalink layer 103, 1056, 119
logical link control layer 105
low level device driver 105
media access control layer 105
UART 105, 110
USART 105
physical layer 103, 105-6, 119
presentation layer 105
session layer 105
transport layer 105
Outputs 1, 6, 8, 224, 28, 45, 47, 49-50, 56,
73,79, 181
digital outputs see Digital output
electromagnetic 47
Overhead ratio 109

Packet 31, 41, 109
Pascal 61
PCB 11-2, 18-9, 22, 37-8, 64, 135-38, 140,
143, 145-54, 160-1, 181, 1834
design 146
clean ground 148
multi-layer-boards 149
recommendation 146
rule 146
ground plane 183
radiate EMI frequencies 11
Programmable logic controller (PLC) 2, 11,
17980
Pointer 57
Ports 8, 17-18, 22-5, 27-30, 56-7, 59, 67,
734, 86, 115, 117, 180
bi-directional 8
definable port 8
expanded mode 29
external chips 29
I/O ports 6
input port 180
keypad see Keypad
output port 180
parallel ports 4, 6, 180

register see Registers
setup 8
Power systems 32
COP watchdog (woof) 35, 41
circuits 36
computer operating property (COP) 35
no operation (NOP) 35, 179
battery-powered 36
black outs 18
brown outs 18
lockup 33
microcontroller-reset circuitry 36
power failure 36
power fluctuates 36
spikes 18
Profibus 106, 109, 118, 182
Programming 42
manipulation of data 46
overall structure 48
constants 48-9
initialization 48
strings see Strings
planning 434
problems 44
three basic parts 45
Protocol 101-3, 1057, 109-11, 117-9, 182
aternative 102
ground planes 149
basic types 149
compound grounding 149
multi-layer PCB 149
purpose 149
identify 146
open standard protocol 103
placement of protection 154
proprietary protocol 103, 118
protecting from lightning 153
translated 102
PvVC 13

Random access memory (RAM) 24, 6, 8, 25,
27, 36, 41, 47, 49, 51, 59, 63-6, 74-5, 77-8,
95, 179, 181
battery 64
corrupt 64-5
external RAM 65

64 K addressing 65

hold large amount of data 65
in amicrocontroller 64
INIT register 65

Index 249

measured in 65
non-volatile 64
rules of guaranteed quality 66
volatile 64
Ratio 31
Read external devices 6
Receiver 31
Register 4, 6, 17, 22, 24, 26-9, 41, 49, 54, 57,
58-60, 65, 68, 71, 73-6, 78, 86, 95, 115,
124, 180, 182
see also Accumul ator
8-bit see 8-bit
16-bit see 16-bit
bias-resisters 115
binary information 28
bits see Bits
control registers 73
datadirection 28-9, 73
direction control register 73
index registers 16, 25-7, 42, 48, 57, 59
pointer see Pointer
ports see Ports
port D bit O (PDO) 28
reduce reflection 115
stack see Stack
termination resister 115, 117
voltageresister 115
Relays 2, 6, 47, 857, 181
AC relays 87
DCrelays 87
snubber networks 87
solid-state relays 47, 86
to eliminate back EMF 87
toincrease 86
toturnon 47
Repeater 114
Resistance 87, 141-2
Resistor 38, 82, 87
ROM 4,6, 8, 63, 65, 74
RS-232 6, 9-10,18, 30, 32, 41, 67, 99, 102,
110-2, 115, 117, 119-20, 124, 127, 182
25 pin connectors 112
analyzer 114
breakout box 113
common confusion factor 11
connectors 111
data communication equipment (DCE)
111-3
dataterminal equipment (DTE) 111-3
DTEto DCE 111

250 Index

DTEto DTE 113
EIA 110
link combinations 111
problem shoot 114
three-wire transmission method 110
to communicate 110
voltage standard see V oltage standard
RS-422 9-10, 32, 102, 115, 182
RS-485 6, 9-10, 18, 30, 32, 41, 99, 101-2,
114-6, 11920, 127, 182
for multi-drop communication 114
preferred connector 116
problem 116
toreduce noise 115
RS-485 VsRS-422 115
RTS-STAR 25

SCI 18, 67,71, 74
Sensor 11, 13, 29, 80, 84, 87-8, 90, 125
Serial communications 6, 30—1
fiber optic cable see Fiber optic
paralel communication 30
two basic transmission modes 30
Serial data communication 4, 29
Shifts and rotates 16, 26, 53, 56
Singleend 80-2, 102, 1246, 139, 181
analog single end circuit 181
common mode 128
differential amplifier 127, 129
floating source 127
grounded 124-5
measurement 124, 1267, 129
measuring asignal 125
single ended analog circuits 80
choke baseisolator 81
pseudo-differential 80
to reduce noiseon 81
single ended digital circuits 81
advantage 81
disadvantage 81
via opto-couplers 81
types of single ended test 125
Smart sensor 2
Software design 43
flow chart see Flow chart
most common problems 42
Solar power 18
Stack 28, 41, 54, 57, 59, 68
correct way to use 28
firstin/last out 59

functions 59
in amicrocontroller 28
LDS 28,
memory block 59, 61, 634
often compared 59
push instruction 28
tofreeup 59
to hold data and address 59
see also Address
user-defined 59
Stepper motor 56, 90-1
Strings 48, 51
string storage area 51

Subroutine 45, 47-51, 59, 61, 63, 67, 6970,

83, 934, 105, 180
Switches 6, 84, 85

electronic switches 834
highly susceptible 84
problem 84

magnetic switch 84

mechanical switches 834

normal close (NC) 84

normal open (NO) 84

switch sensing 83

switch sensor system 84

Synchronous 10, 18, 30-2, 41, 105, 117

asapacket 31

edge triggering 31

lack of 10

for higher data 10

overhead ratio 37

overheads 31

synchronous communications 31

to maintain high-speed 10

USB see USB

Token bus 106, 109, 119
connects multiple nodes 109
pseudo-master 109
Torque 90, 168-9, 172, 178
Transistors 834, 86, 181
Transistor transistor logic (TTL) 47
Transorbs 155
Troubleshooting 108, 113, 159, 173

USB 9, 32, 182
Vectors 64, 67-70, 78

pseudo-vector 68-70, 78
interrupt vectors 68, 78

Index 251

Visual BASIC see BASIC XOR gates 22-3, 41
Voltage 10, 29

Zener diode 155
World wide web (WWW) 101

THIS BOOK WAS DEVELOPED BY IDC TECHNOLOGIES

WHO ARE WE?

IDC Technologies is internationally acknowledged as the premier
provider of practical, technical training for engineers and technicians.

We specialise in the fields of electrical systems, industrial data
communications, telecommunications, automation & control,
mechanical engineering, chemical and civil engineering, and are
continually adding to our portfolio of over 60 different
workshops. Our instructors are highly respected in their fields of
expertise and in the last ten years have trained over 50,000
engineers, scientists and technicians.

With offices conveniently located worldwide, IDC Technologies
has an enthusiastic team of professional engineers, technicians
and support staff who are committed to providing the highest
quality of training and consultancy.

TECHNICAL WORKSHOPS

TRAINING THAT WORKS

We deliver engineering and technology training that will
maximise your business goals. In today's competitive
environment, you require training that will help you and your
organisation to achieve its goals and produce a large return on
investment. With our "Training that Works" objective you and
your organisation will:

* Get job-related skills that you need to achieve your business goals
* Improve the operation and design of your equipment and plant

* Improve your troubleshooting abilities

» Sharpen your competitive edge

* Boost morale and retain valuable staff

e Save time and money

EXPERT INSTRUCTORS

We search the world for good quality instructors who have three
outstanding attributes:

1. Expert knowledge and experience — of the course topic

2. Superb training abilities — to ensure the know-how is transferred
effectively and quickly to you in a practical hands-on way

3. Listening skills — they listen carefully to the needs of the
participants and want to ensure that you benefit from the
experience

idc@idc-online.com

ElECTpicy,

mcmuﬂ\cﬁ

IDC Technologies produce a set of 4 Pocket Guides used by
thousands of engineers and technicians worldwide.

Vol. 1 - ELECTRONICS

Vol. 2 - ELECTRICAL

Vol. 3 - COMMUNICATIONS
Vol. 4 - INSTRUMENTATION

To download a FREE copy of these internationally best selling pocket guides go to:
www.idc-online.com/freedownload/

Each and every instructor is evaluated by the delegates and we
assess the presentation after each class to ensure that the
instructor stays on track in presenting outstanding courses.

HANDS-ON APPROACH TO TRAINING

All IDC Technologies workshops include practical, hands-on
sessions where the delegates are given the opportunity to apply
in practice the theory they have learnt.

REFERENCE MATERIALS

A fully illustrated workshop book with hundreds of pages of
tables, charts, figures and handy hints, plus considerable
reference material is provided FREE of charge to each delegate.

ACCREDITATION AND CONTINUING EDUCATION

Satisfactory completion of all IDC workshops satisfies the
requirements of the International Association for Continuing
Education and Training for the award of 1.4 Continuing
Education Units.

IDC workshops also satisfy criteria for Continuing Professional
Development according to the requirements of the Institution of
Electrical Engineers and Institution of Measurement and Control
in the UK, Institution of Engineers in Australia, Institution of
Engineers New Zealand, and others.

CERTIFICATE OF ATTENDANCE
Each delegate receives a Certificate of Attendance documenting
their experience.

100% MONEY BACK GUARANTEE

IDC Technologies’ engineers have put considerable time and
experience into ensuring that you gain maximum value from
each workshop. If by lunch time of the first day you decide that
the workshop is not appropriate for your requirements, please let
us know so that we can arrange a 100% refund of your fee.

ONSITE WORKSHOPS

All IDC Technologies Training Workshops are available on an
on-site basis, presented at the venue of your choice, saving
delegates travel time and expenses, thus providing your company
with even greater savings.

OFFICE LOCATIONS
AUSTRALIA « CANADA « IRELAND » NEW ZEALAND * SINGAPORE -
SOUTH AFRICA « UNITED KINGDOM « UNITED STATES

www.idc-online.com

CONMUMCKTONS

IMFIWMEHT ATion

	Front cover
	Copyright
	Preface
	Contents
	1. Introduction
	1.1 Microcontroller introduction
	1.2 Microcontroller design and functions
	1.3 Assembly language programming
	1.4 Inputs and outputs
	1.5 Data communication
	1.6 Noise reduction
	1.7 Grounding solutions
	1.8 Installation techniques
	1.9 Conclusion

	2. Microcontroller basics
	2.1 Introduction
	2.2 Number systems – binary, hex, and decimal
	2.3 Gates – AND, OR, XOR and NOT gates
	2.4 Accumulators, A, B and D
	2.5 Registers – X, Y, the stack and ports
	2.6 Communications synchronous and asynchronous
	2.7 Power systems
	2.8 Crystals and oscillator
	2.9 Conclusion

	3. Microcontroller programming
	3.1 Introduction to programming the microcontroller
	3.2 Programming structure and specifications
	3.3 Addressing modes
	3.4 Load, stores and transfers
	3.5 Arithmetic operations
	3.6 Logical operations
	3.7 Shifts and rotates
	3.8 Index registers and the stack
	3.9 Condition code register
	3.10 Branches, jumps, interrupts and calls
	3.11 BASIC and C++
	3.12 Conclusion

	4. Microcontroller memory
	4.1 Introduction to memory
	4.2 User RAM
	4.3 BUFFALO routines, memory map and vectors
	4.4 Interrupts, vectors and pseudo-vectors
	4.5 Control registers
	4.6 EEPROM
	4.7 Conclusion

	5. Microcontroller inputs and outputs
	5.1 Introduction to inputs and outputs
	5.2 Single ended vs differential inputs
	5.3 Digital inputs
	5.4 Digital outputs
	5.5 Analog inputs
	5.6 Digital control of analog devices
	5.7 Keypad interfacing
	5.8 LCD interfacing
	5.9 Conclusion

	6. Data communications
	6.1 Introduction to data communication
	6.2 Basics of serial data communication
	6.3 Open system interconnection model
	6.4 Modes of communications
	6.5 RS-232
	6.6 RS-485
	6.7 Fiber optic cables
	6.8 Fieldbus protocols used in controllers
	6.9 Conclusion

	7. Noise Reduction
	7.1 Introduction to noise reduction
	7.2 Conductive coupled noise
	7.3 Capacitive coupled noise
	7.4 Magnetically coupled noise
	7.5 EMC and noise reduction in PCB design
	7.6 Conclusion

	8. EMC grounding soloutions
	8.1 Introduction to EMC grounding solutions
	8.2 EMC grounding
	8.3 EMC grounding on a PCB
	8.4 Protecting a PCB from lightning
	8.5 Microcontroller equipment ground

	9. Installation and troubleshooting
	9.1 Introduction to installation and troubleshooting
	9.2 Connections – screw, crimp and solder
	9.3 Cable runs and trays
	9.4 Cable ties and mounting
	9.5 Cooling, heating and air conditioning
	9.6 Wire management in a cable run
	9.7 Conduit installation
	9.8 Troubleshooting techniques
	9.9 Safety considerations
	9.10 Conclusion

	10. End notes
	10.1 Conclusion
	10.2 CPU design and functions
	10.3 Assembly language programming
	10.4 Memory
	10.5 Inputs and outputs
	10.6 Data communication
	10.7 Noise reduction
	10.8 Grounding solutions
	10.9 Installation techniques
	10.10 Final words

	Practical 1: Setting up the 68HC11 emulator board
	Practical 2: Activating LEDs on the EVM
	Practical 3: Reading switches on the EVM
	Practical 4: Sending characters to an LCD display
	Practical 5: Reading keypad input
	Practical 6: Using the PAT software
	Practical 7: Viewing character data transmission
	Practical 8: Troubleshooting a data communication system
	Practical 9: Troubleshooting a protocol problem
	Bibliography
	Index

